Skip to main content

Advertisement

Log in

Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Circadian (∼24 h) rhythms in physiology and behaviour are observed in all mammals, including humans. These rhythms are generated by circadian clocks located in the hypothalamus and also in most peripheral tissues. Clock genes are essential components of circadian clocks, and mutations or polymorphisms within several of them have been associated with circadian disorders in humans. However, information about human clock gene expression has remained very limited. Peripheral blood mononuclear cells (PBMCs) represent an ideal material to investigate non-invasively the human clock at the molecular level. In the present study, we analysed the expression of three key clock genes, PER2, BMAL1 and REV-ERBα in PBMCs from ten healthy humans over a 24-h cycle. PER2 and BMAL1 were found to oscillate throughout the light–dark cycle in all subjects. Interestingly, despite normal melatonin and cortisol secretion patterns, two groups of subjects could be distinguished with significantly different mean PER2 and BMAL1 acrophases. BMAL1 oscillated with approximately the same phase as PER2, instead of being anti-phasic as anticipated from data previously obtained in other peripheral tissues. Furthermore, this unusual phase relationship of PER2 and BMAL1 in human PBMCs was associated with a constant expression of REV-ERBα, a crucial regulator of BMAL1, which is highly rhythmic in many other systems. These results reveal the existence of different chronotypes of clock gene expression patterns and suggest specific regulatory mechanisms in human PBMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PBMC:

Peripheral blood mononuclear cell

SCN:

Suprachiasmatic nuclei

References

  1. Panda S, Hogenesh JB, Kay SA (2002) Circadian rhythms from flies to humans. Nature 417:330–335

    Article  Google Scholar 

  2. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  PubMed  Google Scholar 

  3. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  PubMed  Google Scholar 

  4. Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    Article  PubMed  Google Scholar 

  5. Yoo S-H, Yamazaki S, Lowrey P, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong H-K, Oh WJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 102:2608–2613

    Article  Google Scholar 

  6. Toh KL, Jones C, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu Y-H (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  PubMed  Google Scholar 

  7. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, Watanabe T, Sekimoto M, Shibui K, Kim K, Kudo Y, Ozeki Y, Sugishita M, Toyoshima R, Inoue Y, Yamada N, Nagase T, Ozaki N, Ohara O, Ishida N, Okawa M, Takahashi K, Yamauchi T (2001) Association of structural polymorphism in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2:342–346

    Article  PubMed  Google Scholar 

  8. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E (1998) A CLOCK polymorphism associated with human diurnal preference. Sleep 21:569–576

    PubMed  Google Scholar 

  9. Benedetti F, Serreti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet 123:23–26

    Article  Google Scholar 

  10. Takano A, Uchiyama M, Kajimura N, Mishima K, Inoue Y, Kamei Y, Kitajima T, Shibui K, Katoh M, Watanabe T, Hashimotodani Y, Nakajima T, Ozeki Y, Hori T, Yamada N, Toyoshima R, Ozaki N, Okawa M, Nagai K, Takahashi K, Isojima Y, Yamauchi T, Ebisawa T (2004) A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 10:1901–1909

    Article  Google Scholar 

  11. Bjarnason GA, Jordan RCK, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJM, Ben-David Y (2001) Circadian expression of clock genes in human oral mucosa and skin. Am J Pathol 158:1793–1801

    PubMed  Google Scholar 

  12. Takata M, Buriokota N, Ohdo S, Takane H, Terazono H, Miyata M, Sako T, Suyama H, Fukuoka Y, Tomita K, Shimizu E (2002) Daily expression of mRNAs for mammalian clock genes Per2 and Clock in mouse suprachiasmatic nuclei and liver and human peripheral blood mononuclear cells. Jpn J Pharmacol 90:263–269

    Article  PubMed  Google Scholar 

  13. Boivin BD, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102:4143–4145

    Article  PubMed  Google Scholar 

  14. Zeng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694

    Article  PubMed  Google Scholar 

  15. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  PubMed  Google Scholar 

  16. Filipski E, King VM, Li X-M, Granda T, Mormont M-C, Liu X-H, Claustrat B, Hastings MH, Lévi F (2002) Host circadian clock as a control point in tumor progression. J Natl Cancer Inst 94:690–697

    PubMed  Google Scholar 

  17. Grechez-Cassiau A, Panda S, Lacoche S, Teboul M, Azmi S, Laudet V, Hogenesch JB, Taneja R, Delaunay F (2004) The transcriptional repressor STRA13 regulates a subset of peripheral circadian outputs. J Biol Chem 279:1141–1150

    Article  PubMed  Google Scholar 

  18. Nelson W, Tong Y, Lee JK, Halberg F (1979) Methods for cosinor rhythmometry. Chronobiologia 6:305–323

    PubMed  Google Scholar 

  19. Abo T, Kawate T, Itoh K, Kumagai K (1981) Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol 126:1360–1363

    PubMed  Google Scholar 

  20. Levi FA, Canon C, Touitou Y, Sulon J, Mechkouri M, Ponsart ED, Touboul JP, Vannetzel JM, Mowzowicz I, Reinberg A (1988) Circadian rhythms in circulating T lymphocyte subtypes and plasma testosterone, total and free cortisol in five healthy men. Clin Exp Immunol 71:329–335

    PubMed  Google Scholar 

  21. Bourin P, Mansour I, Doinel C, Roue R, Rouger P, Levi F (1993) Circadian rhythms of circulating NK cells in healthy and human immunodeficiency virus-infected men. Chronobiol Int 10:298–305

    PubMed  Google Scholar 

  22. Selmaoui B, Touitou Y (2003) Reproducibility of the circadian rhythms of serum cortisol and melatonin in healthy subjects: a study of three different 24-h cycles over six weeks. Life Sci 73:3339–3349

    Article  PubMed  Google Scholar 

  23. Haus E (1992) Chronobiology of circulation blood cells and platelets. In: Touitou Y, Haus E (eds) Biologic rhythms in clinical and laboratory medicine. Springer, Berlin Heidelberg New York, pp. 504–526

    Google Scholar 

  24. Granda TG, Liu XH, Smaaland R, Cermakian N, Filipski E, Sassone-Corsi P, Lévi F (2004) Circadian regulation of cell cycle and apoptosis proteins in mouse bone marrow and tumor. FASEB J 19:304–306

    PubMed  Google Scholar 

  25. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol. DOI 10.1186/1471-2199-5-18 http://www.biomedcentral.com/1471-2199/5/18:

  26. Morse D, Cermakian N, Brancorsini S, Parvinen M, Sassone-Corsi P (2003) No circadian rhythms in testis: period1 expression is clock independent and developmentally regulated in the mouse. Mol Endocrinol 17:141–151

    Article  PubMed  Google Scholar 

  27. Leloup J-C, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci U S A 100:7051–7056

    Article  PubMed  Google Scholar 

  28. Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, Akiyama M, Udo R, Ohdo S, Okamura H, Shibata S (2003) Adrenergic regulation of clock gene expression in mouse liver. Proc Natl Acad Sci U S A 100:6795–6800

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Goldbeter for helpful discussion. This work was supported by Ministère de la Recherche (ACI 5125), Association pour la Recherche sur le Cancer (No. 3256), and Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Teboul.

Additional information

Michèle Teboul and Marie-Audrey Barrat-Petit contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teboul, M., Barrat-Petit, MA., Li, X.M. et al. Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells. J Mol Med 83, 693–699 (2005). https://doi.org/10.1007/s00109-005-0697-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0697-6

Keywords

Navigation