Skip to main content
Log in

HMG-CoA reductase inhibitors inhibit rat propylthiouracil-induced goiter by modulating the ras-MAPK pathway

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate in vivo the antiproliferative effect of an inhibitor of isoprenoids metabolism, lovastatin, in an experimental model of propylthiouracil-induced goiter. In thyroid cells, thyrotropin (TSH)-induced proliferation requires active isoprenoid synthesis, and the HMG-CoA reductase inhibitors have antiproliferative effects in vitro. Propylthiouracil treatment (PTU) of rats led to thyroid hypertrophy and hyperplasia by TSH-induced activation of the mitogen-activated protein kinase (MAPK) pathway. Immunohistochemistry showed an increased number of proliferating cell nuclear antigen (PCNA)-positive cells in the thyroid gland of PTU-treated rats. Moreover, the phosphorylation of ERK1 and ERK2 was increased in the extract from goiter tissue as compared with the thyroid tissue of untreated rats. To determine whether the inhibition of selected pro-survival pathways (i.e., p21ras-MAPK) was sufficient to affect goitrogenesis, thyroids from 12 PTU-treated rats were injected in vivo with an adenovirus transducing a dominant-negative ras gene (Rad-L61.S186) and another set of 12 rats were injected with a pharmacological inhibitor of MAPK (PD98059). Both Rad-L61.S186 and PD98059 were able to inhibit the PTU-induced goiter. It is interesting to note that lovastatin, when administered in drinking water, significantly prevented the thyroid gland enlargement. Therefore, lovastatin-treated thyroid glands were significantly smaller than those treated with PTU alone. In addition, the lovastatin-treated glands also showed a decreased expression of phosphorylated ERK1/2 and a number of PCNA-positive cells. Our data suggest that lovastatin is an efficient inhibitor of goitrogenesis and provide a rationale for innovative therapeutic strategies employing statins in the treatment of nodular goiter in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eggo MC, Quiney VM, Campbell S (2003) Local factors regulating growth and function of human thyroid cells in vitro and in vivo. Mol Cell Endocrinol 213:47–58

    Article  PubMed  CAS  Google Scholar 

  2. Hegedus L, Bonnema SJ, Bennedbaek FN (2003) Management of simple nodular goiter: current status and future perspectives. Endocr Rev 24:102–132

    Article  PubMed  Google Scholar 

  3. Kupperman E, Wen W, Meinkoth JL (1993) Inhibition of thyrotropin-stimulated DNA synthesis by microinjection of inhibitors of cellular ras and the cyclic AMP dependent protein kinase. Mol Cell Biol 13:4477–4484

    PubMed  CAS  Google Scholar 

  4. Dremier S, Vandeput F, Zwartkruis FJT, Bos JL, Dumont JE, and Maenhaut C (2000) Activation of the small G protein Rap1 in dog thyroid cells by both cAMP-dependent and -independent pathways. Biochem Biophys Res Commun 267:7–11

    Article  PubMed  CAS  Google Scholar 

  5. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP (2001) Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22:631–656

    Article  PubMed  CAS  Google Scholar 

  6. Tsygankova OM, Kupperman E, Wen W, Meinkoth JL (2000) Cyclic AMP activates Ras. Oncogene 19:3609–3615

    Article  PubMed  CAS  Google Scholar 

  7. Alberts AW (1988) Discovery, biochemistry and biology of lovastatin. Am J Cardiol 62:10J–15J

    Article  PubMed  CAS  Google Scholar 

  8. Grieco D, Beg ZH, Romano A, Bifulco M, Aloj SM (1990) Cell cycle progression and 3-hydroxy-3-methylglutaryl coenzyme A reductase are regulated by thyrotropin in FRTL-5 rat thyroid cells. J Biol Chem 265:19343–19350

    PubMed  CAS  Google Scholar 

  9. Sun J, Qian Y, Hamilton AD, Sebti SM (1998) Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16:1467–1473

    Article  PubMed  CAS  Google Scholar 

  10. Lebowitz PF, Sakamuro D, Prendergast GC (1997) Farnesyl transferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment. Cancer Res 57:708–713

    PubMed  CAS  Google Scholar 

  11. Bifulco M, Laezza C, Aloj SM (1999) Inhibition of farnesylation blocks growth but not differentiation in FRTL-5 thyroid cells. Biochimie 81:287–290

    Article  PubMed  CAS  Google Scholar 

  12. Di Matola T, D’Ascoli F, Luongo C, Bifulco M, Rossi G, Fenzi G, Vitale M (2001) Lovastatin-induced apoptosis in thyroid cells: involvement of cytochrome c and lamin B. Eur J Endocrinol 145:645–650

    Article  PubMed  Google Scholar 

  13. Morosini PP, Taccaliti A, Arnaldi G, Simonella G, Petrelli MD, Mancini V, Montironi R, Scarpelli M, Diamanti L, Mantero F (1996) Enhanced expression of transforming growth factor beta1 in rat thyroid hyperplasia is thyrotropin induced and time dependent. Eur J Endocrinol 134:269–271

    Article  Google Scholar 

  14. Tas S, Dirican M, Sarandol E, Serdar Z (2006) The effect of taurine supplementation on oxidative stress in experimental hypothyroidism. Cell Biochem Funct 24(2):53–158

    Article  Google Scholar 

  15. Indolfi C, Di Lorenzo E, Perrino C, Stingone AM, Curcio A, Torella D, Cittadini A, Cardone L, Coppola C, Cavuto L, Arcucci O, Sacca L, Avvedimento EV, Chiariello M (2002) Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation 106:2118–2124

    Article  PubMed  CAS  Google Scholar 

  16. Portella G, Ferulano G, Santoro M, Grieco M, Fusco A, Vecchio G (1989) The Kirsten murine sarcoma virus induces rat thyroid carcinomas in vivo. Oncogene 4:181–188

    PubMed  CAS  Google Scholar 

  17. Santillo M, Mondola P, Gioielli A, Seru R, Iossa S, Annella T, Vitale M, Bifulco M (1996) Inhibitors of Ras farnesylation revert the increased resistance to oxidative stress in K-Ras transformed NIH 3T3 cells. Biochem Biophys Res Commun 229:739–745

    Article  PubMed  CAS  Google Scholar 

  18. Formisano P, Oriente F, Fiory F, Caruso M, Miele C, Maitan MA, Andreozzi F, Vigliotta G, Condorelli G, Beguinot F (2000) Insulin-activated protein kinase Cbeta bypasses Ras and stimulates mitogen-activated protein kinase activity and cell proliferation in muscle cells. Mol Cell Biol 20:6323–6333

    Article  PubMed  CAS  Google Scholar 

  19. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  20. Bischoff JR, Kim DH, Williams A, Heise C, Horn S, Muna M, NgL, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F (1996) An adenovirus mutant that replicates selectively in p53 deficient human tumor cells. Science 274:373–376

    Article  PubMed  CAS  Google Scholar 

  21. Scala S, Portella G, Fedele M, Chiappetta G, Fusco G (2000) Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias. Proc Natl Acad Sci USA 97:4256–4261

    Article  PubMed  CAS  Google Scholar 

  22. Kurki P, Vanderlaan M, Dolbeare F, Gray J, Tan EM (1986) Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res 166:209–219

    Article  PubMed  CAS  Google Scholar 

  23. Vitale M, Di Matola T, Rossi G, Laezza C, Fenzi G, Bifulco M (1999) Prenyltransferase inhibitors induce apoptosis in proliferating thyroid cells through a p53-independent CrmA-sensitive, and caspase-3-like protease-dependent mechanism. Endocrinology 140:698–704

    Article  PubMed  CAS  Google Scholar 

  24. Medina DL, Santisteban P (2000) Thyrotropin-dependent proliferation of in vitro rat thyroid cell systems. Eur J Endocrinol 143:161–178

    Article  PubMed  CAS  Google Scholar 

  25. Stubner D, Gartner R, Greil W, Gropper K, Brabant G, Permanetter W, Horn K, Pickardt CR (1987) Hypertrophy and hyperplasia during goitre growth and involution in rats—separate bioeffects of TSH and iodine. Acta Endocrinol (Copenh) 116:537–548

    CAS  Google Scholar 

  26. Tsygankova OM, Saavedra A, Rebhun JF, Quilliam LA, Meinkoth JL (2001) Coordinated regulation of Rap1 and thyroid differentiation by cyclic AMP and protein kinase A. Mol Cell Biol 21:1921–1929

    Article  PubMed  CAS  Google Scholar 

  27. Kupperman E, Wofford D, Wen W, Meinkoth JL (1996) Ras inhibits thyroglobulin expression but not cyclic adenosine monophosphate-mediated signaling in Wistar rat thyrocytes. Endocrinology 137:96–104

    Article  PubMed  CAS  Google Scholar 

  28. Lemoine NR, Staddon S, Bond J, Wyllie FS, Shaw JJ, Wynford-Thomas D (1990) Partial transformation of human thyroid epithelial cells by mutant Ha-ras oncogene. Oncogene 5:1833–1837

    PubMed  CAS  Google Scholar 

  29. Miller MJ, Rioux L, Prendergast GV, Cannon S, White MA, Meinkoth JL (1998) Differential effects of protein kinase A on ras effector pathways. Mol Cell Biol 18:3718–3726

    PubMed  CAS  Google Scholar 

  30. Studer H, Gerber H, Zbaeren J, Peter HJ (1992) Histomorphological and immunohistochemical evidence that human nodular goiters grow by episodic replication of multiple clusters of thyroid follicular cells. J Clin Endocrinol Metab 75:1151–1158

    Article  PubMed  CAS  Google Scholar 

  31. Golbert L, Kolling JH, Leitão AH, Posser M, Lobato R, Maia AL (2003) Proto-oncogene ras expression in multinodular goiter. Arq Bras Endocrinol Metab 47:721–727

    Article  Google Scholar 

  32. Cheng G, Meinkoth JL (2001) Enhanced sensitivity to apoptosis in Ras-transformed thyroid cells. Oncogene 20:7334–7341

    Article  PubMed  CAS  Google Scholar 

  33. Robbins RJ (2003) Statins sentence thyroid cancer cells to death rho. J Clin Endocrinol Metab 88(7):3019–3020 (July)

    Article  PubMed  CAS  Google Scholar 

  34. Nakagami H, Liao JK (2004) Statins and myocardial hypertrophy. Coron Artery Dis 15:247–250

    Article  PubMed  Google Scholar 

  35. Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I (2003) Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5:789–794

    Article  PubMed  CAS  Google Scholar 

  36. Wardle EN (2005) Cellular oxidative processes in relation to renal disease. Am J Nephrol 25:13–22

    Article  PubMed  CAS  Google Scholar 

  37. Karbownik M, Lewinski A (2003) The role of oxidative stress in physiological and pathological processes in the thyroid gland; possible involvement in pineal-thyroid interactions. Neuro Endocrinol Lett 24:293–303

    PubMed  CAS  Google Scholar 

  38. Iacovelli L, Capobianco L, Salvatore L, Sallese M, D’Ancona GM, De Blasi A (2001) Thyrotropin activates mitogen-activated protein kinase pathway in FRTL-5 by a cAMP-dependent protein kinase A-independent mechanism. Mol Pharmacol 60:924–933

    PubMed  CAS  Google Scholar 

  39. Saavedra AP, Tsygankova OM, Prendergast GV, Dworet JH, Cheng G, Meinkoth JL (2002) Role of cAMP, PKA and Rap1A in thyroid follicular cell survival. Oncogene 21:778–788

    Article  PubMed  CAS  Google Scholar 

  40. Richards JS (2001) New signaling pathways for hormones and cyclic adenosine 3′,5′-monophosphate action in endocrine cells. Mol Endocrinol 15:209–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by grants from the Associazione Italiana per la Ricerca sul Cancro (AIRC), and from Educazione e Ricerca Medica Salernitana (ERMES). We thank Prof. Bruno Moncharmont for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Bifulco.

Additional information

Chiara Laezza and Gherardo Mazziotti contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laezza, C., Mazziotti, G., Fiorentino, L. et al. HMG-CoA reductase inhibitors inhibit rat propylthiouracil-induced goiter by modulating the ras-MAPK pathway. J Mol Med 84, 967–973 (2006). https://doi.org/10.1007/s00109-006-0079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0079-8

Keywords

Navigation