Skip to main content

Advertisement

Log in

Therapeutic potential and mechanism of kinetin as a treatment for the human splicing disease familial dysautonomia

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mutations that affect the splicing of pre-mRNA are a major cause of human disease. Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a T to C transition at base pair 6 of IKBKAP intron 20. This mutation results in variable tissue-specific skipping of exon 20. Previously, we reported that the plant cytokinin kinetin dramatically increases exon 20 inclusion in RNA isolated from cultured FD cells. The goal of the current study was to investigate the nature of the FD splicing defect and the mechanism by which kinetin improves exon inclusion, as such knowledge will facilitate the development of future therapeutics aimed at regulating mRNA splicing. In this study, we demonstrate that treatment of FD lymphoblast cell lines with kinetin increases IKBKAP mRNA and IKAP protein to normal levels. Using a series of minigene constructs, we show that deletion of a region at the end of IKBKAP exon 20 disrupts the ability of kinetin to improve exon inclusion, pinpointing a kinetin responsive sequence element. We next performed a screen of endogenously expressed genes with multiple isoforms resulting from exon skipping events and show that kinetin’s ability to improve exon inclusion is not limited to IKBKAP. Lastly, we highlight the potential of kinetin for the treatment of other human splicing disorders by showing correction of a splicing defect in neurofibromatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302:2141–2144

    Article  PubMed  CAS  Google Scholar 

  2. Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71

    Article  PubMed  CAS  Google Scholar 

  3. Modrek B, Resch A, Grasso C, Lee C (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29:2850–2859

    Article  PubMed  CAS  Google Scholar 

  4. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437

    Article  PubMed  CAS  Google Scholar 

  5. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    Article  PubMed  CAS  Google Scholar 

  6. Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, Hogan EL, Boustany RM, Vance JM, Nance MA et al (2001) Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet 68:1077–1085

    Article  PubMed  CAS  Google Scholar 

  7. Beck S, Penque D, Garcia S, Gomes A, Farinha C, Mata L, Gulbenkian S, Gil-Ferreira K, Duarte A, Pacheco P et al (1999) Cystic fibrosis patients with the 3272-26A->G mutation have mild disease, leaky alternative mRNA splicing, and CFTR protein at the cell membrane. Hum Mutat 14:133–144

    Article  PubMed  CAS  Google Scholar 

  8. Nissim-Rafinia M, Kerem B (2005) The splicing machinery is a genetic modifier of disease severity. Trends Genet 21:480–483

    Article  PubMed  CAS  Google Scholar 

  9. Moller LB, Tumer Z, Lund C, Petersen C, Cole T, Hanusch R, Seidel J, Jensen LR, Horn N (2000) Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical Menkes disease or occipital horn syndrome. Am J Hum Genet 66:1211–1220

    Article  PubMed  CAS  Google Scholar 

  10. Garcia-Blanco MA (2003) Mending the message. Nat Biotechnol 21:1448–1449

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546

    Article  PubMed  CAS  Google Scholar 

  12. Yeo GW (2005) Splicing regulators: targets and drugs. Genome Biol 6:240

    Article  PubMed  CAS  Google Scholar 

  13. Pearson J (1979) Familial dysautonomia (a brief review). J Auton Nerv Syst 1:119–126

    Article  PubMed  CAS  Google Scholar 

  14. Axelrod FB (1995) Familial Dysautonomia. Harwood Academic, Luxembourg

    Google Scholar 

  15. Lehavi O, Aizenstein O, Bercovich D, Pavzner D, Shomrat R, Orr-Urtreger A, Yaron Y (2003) Screening for familial dysautonomia in Israel: evidence for higher carrier rate among Polish Ashkenazi Jews. Genet Test 7:139–142

    Article  PubMed  CAS  Google Scholar 

  16. Maayan C, Kaplan E, Shachar S, Peleg O, Godfrey S (1987) Incidence of familial dysautonomia in Israel 1977–1981. Clin Genet 32:106–108

    Article  PubMed  CAS  Google Scholar 

  17. Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY (2001) Familial dysautonomia is caused by mutations of the IKAP gene. Am J Hum Genet 68:753–758

    Article  PubMed  CAS  Google Scholar 

  18. Leyne M, Mull J, Gill SP, Cuajungco MP, Oddoux C, Blumenfeld A, Maayan C, Gusella JF, Axelrod FB, Slaugenhaupt SA (2003) Identification of the first non-Jewish mutation in familial dysautonomia. Am J Med Genet A 118:305–308

    Article  PubMed  Google Scholar 

  19. Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68:598–605

    Article  PubMed  CAS  Google Scholar 

  20. Cuajungco MP, Leyne M, Mull J, Gill SP, Lu W, Zagzag D, Axelrod FB, Maayan C, Gusella JF, Slaugenhaupt SA (2003) Tissue-specific reduction in splicing efficiency of IKBKAP due to the major mutation associated with familial dysautonomia. Am J Hum Genet 72:749–758

    Article  PubMed  CAS  Google Scholar 

  21. Byers PH (2002) Killing the messenger: new insights into nonsense-mediated mRNA decay. J Clin Invest 109:3–6

    Article  PubMed  CAS  Google Scholar 

  22. Slaugenhaupt SA, Mull J, Leyne M, Cuajungco MP, Gill SP, Hims MM, Quintero F, Axelrod FB, Gusella JF (2004) Rescue of a human mRNA splicing defect by the plant cytokinin kinetin. Hum Mol Genet 13:429–436

    Article  PubMed  CAS  Google Scholar 

  23. Close P, Hawkes N, Cornez I, Creppe C, Lambert CA, Rogister B, Siebenlist U, Merville MP, Slaugenhaupt SA, Bours V et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22:521–531

    Article  PubMed  CAS  Google Scholar 

  24. Ibrahim EC, Hims MM, Shomron N, Burge CB, Slaugenhaupt SA, Reed R (2006) Weak definition of IKBKAP exon 20 leads to aberrant splicing in familial dysautonomia. Hum Mutat 2006 Sep 8 [Epub ahead of print]

  25. Cohen L, Henzel WJ, Baeuerle PA (1998) IKAP is a scaffold protein of the IkappaB kinase complex. Nature 395:292–296

    Article  PubMed  CAS  Google Scholar 

  26. Krappmann D, Hatada EN, Tegethoff S, Li J, Klippel A, Giese K, Baeuerle PA, Scheidereit C (2000) The I kappa B kinase (IKK) complex is tripartite and contains IKK gamma but not IKAP as a regular component. J Biol Chem 275:29779–29787

    Article  PubMed  CAS  Google Scholar 

  27. Hawkes NA, Otero G, Winkler GS, Marshall N, Dahmus ME, Krappmann D, Scheidereit C, Thomas CL, Schiavo G, Erdjument-Bromage H et al (2002) Purification and characterization of the human elongator complex. J Biol Chem 277:3047–3052

    Article  PubMed  CAS  Google Scholar 

  28. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R (2006) tRNAGlu wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 59:677–688

    Article  PubMed  CAS  Google Scholar 

  29. Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17:841–853

    Article  PubMed  CAS  Google Scholar 

  30. Holmberg C, Katz S, Lerdrup M, Herdegen T, Jaattela M, Aronheim A, Kallunki T (2002) A novel specific role for I-kappa B kinase complex-associated protein in cytosolic stress signaling. J Biol Chem 10:10

    Article  Google Scholar 

  31. Heemskerk J, Tobin AJ, Bain LJ (2002) Teaching old drugs new tricks. Meeting of the Neurodegeneration Drug Screening Consortium, 7–8 April 2002, Washington, DC, USA. Trends Neurosci 25:494–496

    Article  PubMed  Google Scholar 

  32. Blumenfeld A, Slaugenhaupt SA, Axelrod FB, Lucente DE, Maayan C, Liebert CB, Ozelius LJ, Trofatter JA, Haines JL, Breakefield XO et al (1993) Localization of the gene for familial dysautonomia on chromosome 9 and definition of DNA markers for genetic diagnosis. Nat Genet 4:160–164

    Article  PubMed  CAS  Google Scholar 

  33. Sorek R, Shemesh R, Cohen Y, Basechess O, Ast G, Shamir R (2004) A non-EST-based method for exon-skipping prediction. Genome Res 14:1617–1623

    Article  PubMed  CAS  Google Scholar 

  34. Lambert J, Naeyaert JM, Callens T, De Paepe A, Messiaen L (1998) Human myosin V gene produces different transcripts in a cell type-specific manner. Biochem Biophys Res Commun 252:329–333

    Article  PubMed  CAS  Google Scholar 

  35. Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F, Rosenberg C, Hulette C, Jellinger K, Hampel H et al (2006) The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. J Neurochem 96:635–644

    Article  PubMed  CAS  Google Scholar 

  36. Coulter LR, Landree MA, Cooper TA (1997) Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 17:2143–2150

    PubMed  CAS  Google Scholar 

  37. Fairbrother WG, Yeh RF, Sharp PA, Burge CB (2002) Predictive identification of exonic splicing enhancers in human genes. Science 297:1007–1013

    Article  PubMed  CAS  Google Scholar 

  38. Dominski Z, Kole R (1991) Selection of splice sites in pre-mRNAs with short internal exons. Mol Cell Biol 11:6075–6083

    PubMed  CAS  Google Scholar 

  39. Xu R, Teng J, Cooper TA (1993) The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol 13:3660–3674

    PubMed  CAS  Google Scholar 

  40. Messiaen LM, Callens T, Mortier G, Beysen D, Vandenbroucke I, Van Roy N, Speleman F, Paepe AD (2000) Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15:541–555

    Article  PubMed  CAS  Google Scholar 

  41. Ars E, Serra E, Garcia J, Kruyer H, Gaona A, Lazaro C, Estivill X (2000) Mutations affecting mRNA splicing are the most common molecular defects in patients with neurofibromatosis type 1. Hum Mol Genet 9:237–247

    Article  PubMed  CAS  Google Scholar 

  42. Ars E, Kruyer H, Morell M, Pros E, Serra E, Ravella A, Estivill X and Lazaro C (2003) Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 40:e82

    Article  PubMed  CAS  Google Scholar 

  43. Rattan SI, Clark BF (1994) Kinetin delays the onset of ageing characteristics in human fibroblasts. Biochem Biophys Res Commun 201:665–672

    Article  PubMed  CAS  Google Scholar 

  44. Olsen A, Siboska GE, Clark BF, Rattan SI (1999) N(6)-Furfuryladenine, kinetin, protects against Fenton reaction-mediated oxidative damage to DNA. Biochem Biophys Res Commun 265:499–502

    Article  PubMed  CAS  Google Scholar 

  45. Verbeke P, Siboska GE, Clark BF, Rattan SI (2000) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophys Res Commun 276:1265–1270

    Article  PubMed  CAS  Google Scholar 

  46. McCullough JK (2002) Clinical study of safety and efficacy of using topical kinetin 0.1% (Kinerase) to treat photodamaged skin. Cosmet Dermatol 15:29

    Google Scholar 

  47. Holste D, Huo G, Tung V, Burge CB (2006) HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res 34:D56–D62

    Article  PubMed  CAS  Google Scholar 

  48. Soret J, Bakkour N, Maire S, Durand S, Zekri L, Gabut M, Fic W, Divita G, Rivalle C, Dauzonne D et al (2005) Selective modification of alternative splicing by indole derivatives that target serine–arginine-rich protein splicing factors. Proc Natl Acad Sci U S A 102:8764–8769

    Article  PubMed  CAS  Google Scholar 

  49. Singh R, Valcarcel J (2005) Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 12:645–653

    Article  PubMed  CAS  Google Scholar 

  50. Carmel I, Tal S, Vig I, Ast G (2004) Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 10:828–840

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all FD patients and their families for their continued participation in our studies. We thank Dr. Felicia Axelrod and her staff at the Dysautonomia Treatment and Evaluation Center at New York University Medical School for her long-standing contributions to this work. We also thank Dr. Chris Burge for generously providing us with the SXN minigene construct. This work was supported by grants from the Dysautonomia Foundation Inc, the National Institute for Neurological Disorders and Stroke, and the Massachusetts General Hospital-Tosteson Fund for Medical discovery. C. Lazaro was supported by Generalitat de Catalunya (2003BEAI4000094, 2004BE00368, 2005SGR00018) and by the Spanish Government (SAF2005-00833, SAF2006-05399, ISCIII C03/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan A. Slaugenhaupt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hims, M.M., Ibrahim, E.C., Leyne, M. et al. Therapeutic potential and mechanism of kinetin as a treatment for the human splicing disease familial dysautonomia. J Mol Med 85, 149–161 (2007). https://doi.org/10.1007/s00109-006-0137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0137-2

Keywords

Navigation