Skip to main content

Advertisement

Log in

Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Clinical nephrologists are well aware of the consequences of pathologic mineralization (calcification). Several studies have found a strong association between vascular and valvular mineralization and advanced or end-stage chronic kidney disease (CKD), with shorter survival times and increased morbidity. In the cardiology community, until quite recently, ectopic mineralization was considered harmless or even beneficial. Some still assume that atherosclerotic intima mineralization stabilizes atherosclerotic plaques, thus doing more good than harm. We suggest that vascular mineralization and indeed soft tissue mineralization in general may be a way in which the body deals with certain adverse situations involving local inflammation, associated tissue damage and tissue remodeling. Ectopic soft tissue mineralization resembles physiological bone mineralization in many ways. Markers of mineralizing bone also are present during soft tissue mineralization. We postulate that it may be possible to reverse soft tissue mineralization by applying selected principles of bone catabolism, namely mineral dissolution and phagocytosis. We consider putative strategies for therapeutic intervention to maximize the clearing of calcified debris particles. In particular, we discuss the roles of the plasma protein fetuin-A/alpha2HS-glycoprotein and the mineral-binding protein osteopontin in the prevention and possible regression of mineralization in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. London GM, Marchais SJ, Guerin AP, Metivier F (2005) Arteriosclerosis, vascular calcifications and cardiovascular disease in uremia. Curr Opin Nephrol Hypertens 14:525–531

    Article  PubMed  CAS  Google Scholar 

  2. Price PA, Thomas GR, Pardini AW, Figueira WF, Caputo JM, Williamson MK (2002) Discovery of a high molecular weight complex of calcium, phosphate, fetuin, and matrix gamma-carboxyglutamic acid protein in the serum of etidronate-treated rats. J Biol Chem 277:3926–3934

    Article  PubMed  CAS  Google Scholar 

  3. Schinke T, Amendt C, Trindl A, Pöschke O, Müller-Esterl W, Jahnen-Dechent W (1996) The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem 271:20789–20796

    Article  PubMed  CAS  Google Scholar 

  4. Jahnen-Dechent W, Schäfer C, Heiss A, Grötzinger J (2001) Systemic inhibition of spontaneous calcification by the serum protein alpha 2-HS glycoprotein/fetuin. Z Kardiol 90(Suppl 3):47–56

    PubMed  Google Scholar 

  5. Schäfer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Müller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366

    PubMed  Google Scholar 

  6. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Bohm R, Metzger T, Wanner C, Jahnen-Dechent W, Floege J (2003) Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 361:827–833

    Article  PubMed  CAS  Google Scholar 

  7. Heiss A, DuChesne A, Denecke B, Grötzinger J, Yamamoto K, Renné T, Jahnen-Dechent W (2003) Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J Biol Chem 278:13333–13341

    Article  PubMed  CAS  Google Scholar 

  8. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, Jahnen-Dechent W, Shanahan CM (2005) Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 16:2920–2930

    Article  PubMed  CAS  Google Scholar 

  9. Westenfeld R, Schäfer C, Smeets R, Brandenburg VM, Floege J, Ketteler M, Jahnen-Dechent W (2007) Fetuin-A (AHSG) prevents extraosseous calcification induced by uraemia and phosphate challenge in mice. Nephrol Dial Transplant 22:1537–1546

    Article  PubMed  CAS  Google Scholar 

  10. Heiss A, Jahnen-Dechent W, Endo H, Schwahn D (2007) Structural dynamics of a colloidal protein - mineral complex bestowing on calcium phosphate a high solubility in biological fluids. Biointerphases 2:16–20

    Article  CAS  PubMed  Google Scholar 

  11. Schäfer C, Jahnen-Dechent W (2007) The biological and cellular role of fetuin family proteins in biomineralization. In: Baeuerlein E, Behrens P, Epple M (eds) Handbook of biomineralization. Wiley VCH, Weinheim

    Google Scholar 

  12. Price PA, Nguyen TM, Williamson MK (2003) Biochemical characterization of the serum fetuin-mineral complex. J Biol Chem 278:22153–22160

    Article  PubMed  CAS  Google Scholar 

  13. Price PA, Lim JE (2003) The inhibition of calcium phosphate precipitation by fetuin is accompanied by the formation of a fetuin-mineral complex. J Biol Chem 278:22144–22152

    Article  PubMed  CAS  Google Scholar 

  14. Jahnen-Dechent W (2004) Lot’s wife’s problem revisted: how we prevent pathological calcification. In: Baeuerlein E (ed) Biomineralization progress in biology, molecular biology and application. Wiley-VCH, Weinheim

    Google Scholar 

  15. Berthold LD, Froelich JJ, Barth P, Pogarell O, Klose KJ (1999) Pulmonary, nodular cavernous, calcifying form of amyloidosis. Radiologe 39:323–326

    Article  PubMed  CAS  Google Scholar 

  16. Ghadially FN (2001) As you like it, Part 3: a critique and historical review of calcification as seen with the electron microscope. Ultrastruct Pathol 25:243–267

    Article  PubMed  CAS  Google Scholar 

  17. Fine A, Zacharias J (2002) Calciphylaxis is usually non-ulcerating: Risk factors, outcome and therapy. Kidney Int 61:2210–2217

    Article  PubMed  Google Scholar 

  18. Blumenthal NC (1989) Mechanisms of inhibition of calcification. Clin Orthop 247:279–289

    PubMed  Google Scholar 

  19. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  PubMed  CAS  Google Scholar 

  20. Murshed M, Schinke T, McKee MD, Karsenty G (2004) Extracellular matrix mineralization is regulated locally; different roles of two gla-containing proteins. J Cell Biol 165:625–630

    Article  PubMed  CAS  Google Scholar 

  21. Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276:266–269

    Article  PubMed  CAS  Google Scholar 

  22. Stenbeck G, Horton MA (2004) Endocytic trafficking in actively resorbing osteoclasts. J Cell Sci 117:827–836

    Article  PubMed  CAS  Google Scholar 

  23. Salo J, Lehenkari P, Mulari M, Metsikko K, Vaananen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    Article  PubMed  CAS  Google Scholar 

  24. Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461

    Article  PubMed  CAS  Google Scholar 

  25. Harmey D, Hessle L, Narisawa S, Johnson KA, Terkeltaub R, Millan JL (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209

    PubMed  CAS  Google Scholar 

  26. Anderson HC, Garimella R, Tague SE (2005) The role of matrix vesicles in growth plate development and biomineralization. Front Biosci 10:822–837

    Article  PubMed  CAS  Google Scholar 

  27. Shanahan CM (2005) Mechanisms of vascular calcification in renal disease. Clin Nephrol 63:146–157

    PubMed  CAS  Google Scholar 

  28. Cisar JO, Xu DQ, Thompson J, Swaim W, Hu L, Kopecko DJ (2000) An alternative interpretation of nanobacteria-induced biomineralization. Proc Natl Acad Sci U S A 97:11511–11515

    Article  PubMed  CAS  Google Scholar 

  29. Benzerara K, Miller VM, Barell G, Kumar V, Miot J, Brown GE Jr, Lieske JC (2006) Search for microbial signatures within human and microbial calcifications using soft x-ray spectromicroscopy. J Investig Med 54:367–379

    Article  PubMed  CAS  Google Scholar 

  30. Vali H, McKee MD, Ciftcioglu N, Sears SK, Plows FL, Chevet E, Ghiabi P, Plavsic M, Kajander EO, Zare RN (2001) Nanoforms: A new type of protein-associated mineralization. Geochim Cosmochim Acta 65:63–74

    Article  CAS  Google Scholar 

  31. Kajander EO, Ciftcioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci U S A 95:8274–8279

    Article  PubMed  CAS  Google Scholar 

  32. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P (2006) Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A 103:17741–17746

    Article  PubMed  CAS  Google Scholar 

  33. Triffitt JT, Gebauer U, Ashton BA, Owen ME, Reynolds JJ (1976) Origin of plasma alpha2HS-glycoprotein and its accumulation in bone. Nature 262:226–227

    Article  PubMed  CAS  Google Scholar 

  34. McKee MD, Farach-Carson MC, Butler WT, Hauschka PV, Nanci A (1993) Ultrastructural immunolocalization of noncollagenous (osteopontin and osteocalcin) and plasma (albumin and alpha 2HS-glycoprotein) proteins in rat bone. J Bone Miner Res 8:485–496

    Article  PubMed  CAS  Google Scholar 

  35. Moe SM, Reslerova M, Ketteler M, O'Neill K, Duan D, Koczman J, Westenfeld R, Jahnen-Dechent W, Chen NX (2005) Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:2295–2304

    Article  PubMed  CAS  Google Scholar 

  36. Villanueva EV, Wasiak J, Petherick ES (2003) Percutaneous transluminal rotational atherectomy for coronary artery disease. Cochrane Database Syst Rev 4:CD003334

    PubMed  Google Scholar 

  37. Hankermeyer CR, Ohashi KL, Delaney DC, Ross J, Constantz BR (2002) Dissolution rates of carbonated hydroxyapatite in hydrochloric acid. Biomaterials 23:743–750

    Article  PubMed  CAS  Google Scholar 

  38. Ohashi KL, Culkar J, Riebman JB, Estes M, Constantz BR, Yoganathan AP (2004) Hemodynamic characterization of calcified stenotic human aortic valves before and after treatment with a novel aortic valve repair system. J Heart Valve Dis 13:582–592 (discussion 592)

    PubMed  Google Scholar 

  39. Slatopolsky E, Brown A, Dusso A (2005) Calcium, phosphorus and vitamin D disorders in uremia. Contrib Nephrol 149:261–271

    Article  PubMed  CAS  Google Scholar 

  40. Chertow GM, Pupim LB, Block GA, Correa-Rotter R, Drueke TB, Floege J, Goodman WG, London GM, Mahaffey KW, Moe SM, Wheeler DC, Albizem M, Olson K, Klassen P, Parfrey P (2007) Evaluation of cinacalcet therapy to lower cardiovascular events (EVOLVE): rationale and design overview. Clin J Am Soc Nephrol 2:898–905

    Article  PubMed  CAS  Google Scholar 

  41. Guerra G, Shah RC, Ross EA (2005) Rapid resolution of calciphylaxis with intravenous sodium thiosulfate and continuous venovenous haemofiltration using low calcium replacement fluid: case report. Nephrol Dial Transplant 20:1260–1262

    Article  PubMed  Google Scholar 

  42. Cicone JS, Petronis JB, Embert CD, Spector DA (2004) Successful treatment of calciphylaxis with intravenous sodium thiosulfate. Am J Kidney Dis 43:1104–1108

    Article  PubMed  Google Scholar 

  43. Yatzidis H (1985) Successful sodium thiosulphate treatment for recurrent calcium urolithiasis. Clin Nephrol 23:63–67

    PubMed  CAS  Google Scholar 

  44. Shiraishi N, Kitamura K, Miyoshi T, Adachi M, Kohda Y, Nonoguchi H, Misumi S, Maekawa Y, Murayama T, Tomita M, Tomita K (2006) Successful treatment of a patient with severe calcific uremic arteriolopathy (calciphylaxis) by etidronate disodium. Am J Kidney Dis 48:151–154

    Article  PubMed  Google Scholar 

  45. Monney P, Nguyen QV, Perroud H, Descombes E (2004) Rapid improvement of calciphylaxis after intravenous pamidronate therapy in a patient with chronic renal failure. Nephrol Dial Transplant 19:2130–2132

    Article  PubMed  Google Scholar 

  46. Persy V, De Broe M, Ketteler M (2006) Bisphosphonates prevent experimental vascular calcification: Treat the bone to cure the vessels? Kidney Int 70:1537–1538

    Article  PubMed  CAS  Google Scholar 

  47. van der Sluis IM, Boot AM, Vernooij M, Meradji M, Kroon AA (2006) Idiopathic infantile arterial calcification: clinical presentation, therapy and long-term follow-up. Eur J Pediatr 165:590–593

    Article  PubMed  Google Scholar 

  48. Maniscalco BS, Taylor KA (2004) Calcification in coronary artery disease can be reversed by EDTA-tetracycline long-term chemotherapy. Pathophysiology 11:95–101

    Article  PubMed  CAS  Google Scholar 

  49. Silay MS, Miroglu C (2007) The risk of urolithiasis recurrence may be reduced with anti-nanobacterial therapy. Med Hypotheses 68:1348–1350

    Article  PubMed  Google Scholar 

  50. Essalihi R, Dao HH, Gilbert LA, Bouvet C, Semerjian Y, McKee MD, Moreau P (2005) Regression of medial elastocalcinosis in rat aorta: a new vascular function for carbonic anhydrase. Circulation 112:1628–1635

    Article  PubMed  CAS  Google Scholar 

  51. Essalihi R, Zandvliet ML, Moreau S, Gilbert LA, Bouvet C, Lenoel C, Nekka F, McKee MD, Moreau P (2007) Distinct effects of amlodipine treatment on vascular elastocalcinosis and stiffness in a rat model of isolated systolic hypertension. J Hypertens 25:1879–1886

    Article  PubMed  CAS  Google Scholar 

  52. Schurgers LJ, Spronk HM, Soute BA, Schiffers PM, DeMey JG, Vermeer C (2007) Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood 109:2823–2831

    Article  PubMed  CAS  Google Scholar 

  53. Speer MY, McKee MD, Guldberg RE, Liaw L, Yang HY, Tung E, Karsenty G, Giachelli CM (2002) Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 196:1047–1055

    Article  PubMed  CAS  Google Scholar 

  54. Gravallese EM (2003) Osteopontin: a bridge between bone and the immune system. J Clin Invest 112:147–149

    PubMed  CAS  Google Scholar 

  55. Singh M, Ananthula S, Milhorn DM, Krishnaswamy G, Singh K (2007) Osteopontin: a novel inflammatory mediator of cardiovascular disease. Front Biosci 12:214–221

    Article  PubMed  CAS  Google Scholar 

  56. McKee MD, Nanci A (1996) Secretion of Osteopontin by macrophages and its accumulation at tissue surfaces during wound healing in mineralized tissues: a potential requirement for macrophage adhesion and phagocytosis. Anat Rec 245:394–409

    Article  PubMed  CAS  Google Scholar 

  57. Ohri R, Tung E, Rajachar R, Giachelli CM (2005) Mitigation of ectopic calcification in osteopontin-deficient mice by exogenous osteopontin. Calcif Tissue Int 76:307–315

    Article  PubMed  CAS  Google Scholar 

  58. Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK (2004) Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J 378:1083–1087

    Article  PubMed  CAS  Google Scholar 

  59. Hoyer JR, Asplin JR, Otvos L (2001) Phosphorylated osteopontin peptides suppress crystallization by inhibiting the growth of calcium oxalate crystals. Kidney Int 60:77–82

    Article  PubMed  CAS  Google Scholar 

  60. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  PubMed  CAS  Google Scholar 

  61. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788

    Article  PubMed  CAS  Google Scholar 

  62. Gregory CD, Devitt A (2004) The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 113:1–14

    Article  PubMed  CAS  Google Scholar 

  63. Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, von Andrian UH, Wagner DD, Stossel TP, Hartwig JH (2003) The clearance mechanism of chilled blood platelets. Cell 112:87–97

    Article  PubMed  CAS  Google Scholar 

  64. Lee L (1962) Reticuloendothelial clearance of circulating fibrin in the pathogenesis of the generalized Shwartzman reaction. J Exp Med 115:1065–1082

    Article  PubMed  CAS  Google Scholar 

  65. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  PubMed  CAS  Google Scholar 

  66. Saini HK, Xu YJ, Arneja AS, Tappia PS, Dhalla NS (2005) Pharmacological basis of different targets for the treatment of atherosclerosis. J Cell Mol Med 9:818–839

    Article  PubMed  CAS  Google Scholar 

  67. Blank M, Nur I, Toub O, Maor A, Shoenfeld Y (2005) Toward molecular targeting with specific intravenous immunoglobulin preparation. Clin Rev Allergy Immunol 29:213–217

    Article  PubMed  CAS  Google Scholar 

  68. Hauer AD, Uyttenhove C, de Vos P, Stroobant V, Renauld JC, van Berkel TJ, van Snick J, Kuiper J (2005) Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 112:1054–1062

    Article  PubMed  CAS  Google Scholar 

  69. Stoll G, Bendszus M (2006) Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37:1923–1932

    Article  PubMed  CAS  Google Scholar 

  70. Nadra I, Mason JC, Philippidis P, Florey O, Smythe CD, McCarthy GM, Landis RC, Haskard DO (2005) Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 96:1248–1256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The original research discussed and presented in this manuscript was funded by the Deutsche Forschungsgemeinschaft and the Interdisciplinary Center for Clinical Research IZKF Biomat within the Medical Faculty of RWTH Aachen University (WJD, MK) and by the Canadian Institutes of Health Research (MDM) and the National Institutes of Health USA (MDM). The authors thank L. Malynowsky for assistance with the microscopy, and G. Karsenty, T. Schinke, M. Murshed, A. Nanci, C. Murry, and C. Giachelli for scientific collaborations and discussions related to the themes of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Jahnen-Dechent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahnen-Dechent, W., Schäfer, C., Ketteler, M. et al. Mineral chaperones: a role for fetuin-A and osteopontin in the inhibition and regression of pathologic calcification. J Mol Med 86, 379–389 (2008). https://doi.org/10.1007/s00109-007-0294-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0294-y

Keywords

Navigation