Skip to main content
Log in

Aldosterone in salt-sensitive hypertension and metabolic syndrome

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Metabolic syndrome, which is caused by obesity, is now a global pandemic. Metabolic syndrome is an aggregation of hypertension, diabetes and dyslipidaemia. Insulin resistance is a key factor in the development of these components of metabolic syndrome. Concerning the mechanism for the development of hypertension in metabolic syndrome, the lack of insulin resistance in the kidney increases sodium reabsorption by hyperinsulinaemia, leading to sodium retention in the body, and resultant salt-sensitive hypertension. Moreover, hyperaldosteronism, which is caused by adipocyte-derived aldosterone-releasing factors, induces not only salt-sensitive hypertension, but also proteinuria in obese hypertensive rats. Salt loading markedly aggravates proteinuria and induces cardiac diastolic dysfunction in obese hypertensive rats, suggesting that salt and aldosterone exert unfavourable synergistic actions on the cardiovascular system, possibly through the overproduction of oxidative stress. In turn, reactive oxygen species (ROS), which are induced by adipokines such as tumour necrosis factor-α, non-esterified fatty acids, angiotensinogen etc., can activate the mineralocorticoid (MR) receptor, in an aldosterone-independent fashion. Therefore, aldosterone/MR activation plays a key role not only in the development of salt-sensitive hypertension, but also in cardiovascular injury in metabolic syndrome, possibly through its function as a feed-forward system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–2716

    Article  PubMed  Google Scholar 

  2. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, Whelton PK, He J (2004) The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med 140:167–174

    PubMed  Google Scholar 

  3. Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, Fujita T (2006) Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol 17:3438–3446

    Article  PubMed  CAS  Google Scholar 

  4. Nagase M, Matsui H, Shibata S, Gotoda T, Fujita T (2007) Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50:877–883

    Article  PubMed  CAS  Google Scholar 

  5. Natali A, Quiñones Galvan A, Santoro D, Pecori N, Taddei S, Salvetti A, Ferrannini E (1993) Relationship between insulin release, antinatriuresis and hypokalaemia after glucose ingestion in normal and hypertensive man. Clin Sci (Lond) 85:327–335

    CAS  Google Scholar 

  6. Zheng Y, Yamada H, Sakamoto K, Horita S, Kunimi M, Endo Y, Li Y, Tobe K, Terauchi Y, Kadowaki T, Seki G, Fujita T (2005) Roles of insulin receptor substrates in insulin-induced stimulation of renal proximal bicarbonate absorption. J Am Soc Nephrol 16:2288–2295

    Article  PubMed  CAS  Google Scholar 

  7. Uzu T, Kimura G, Yamauchi A, Kanasaki M, Isshiki K, Araki S, Sugiomoto T, Nishio Y, Maegawa H, Koya D, Haneda M, Kashiwagi A (2006) Enhanced sodium sensitivity and disturbed circadian rhythm of blood pressure in essential hypertension. J Hypertens 24:1627–1632

    Article  PubMed  CAS  Google Scholar 

  8. Rocchini AP, Key J, Bondie D, Chico R, Moorehead C, Katch V, Martin M (1989) The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med 321:580–585

    PubMed  CAS  Google Scholar 

  9. Strazzullo P, Barbato A, Galletti F, Barba G, Siani A, Iacone R, D’Elia L, Russo O, Versiero M, Farinaro E, Cappucio FP (2006) Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart study. J Hypertens 24:1633–1639

    Article  PubMed  CAS  Google Scholar 

  10. DeFronzo RA, Cooke CR, Andres R, Faloona GR, Davis PJ (1975) The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J Clin Invest 55:845–855

    Article  PubMed  CAS  Google Scholar 

  11. Hall JE, Kuo JJ, da Silva AA, de Paula RB, Liu J, Tallam L (2003) Obesity-associated hypertension and kidney disease. Curr Opin Nephrol Hypertens 12:195–200

    Article  PubMed  CAS  Google Scholar 

  12. de Paula RB, da Silva AA, Hall JE (2004) Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension 43:41–47

    Article  PubMed  CAS  Google Scholar 

  13. Connell JMC, Davies E (2005) The new biology of aldosterone. J Endocrinol 186:1–20

    Article  PubMed  CAS  Google Scholar 

  14. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T (2007) Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49:355–364

    Article  PubMed  CAS  Google Scholar 

  15. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR (2003) Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A 100:14211–14216

    Article  PubMed  CAS  Google Scholar 

  16. Verhave JC, Hillege HL, Burgerhof JGM, Janssen WMT, Gansevoort RT, Navis GJ, de Zeeuw D, de Jong PE; PRVEND Study Group (2004) Sodium intake affects urinary albumin excretion especially in overweight subjects. J Intern Med 256:324–330

    Article  PubMed  CAS  Google Scholar 

  17. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T (2006) Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47:1084–1093

    Article  PubMed  CAS  Google Scholar 

  18. Funder JW (2004) Is aldosterone bad for the heart? Trends Endocrinol Metab 15:139–142

    Article  PubMed  CAS  Google Scholar 

  19. Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357

    Article  PubMed  CAS  Google Scholar 

  20. Pitt B (2004) Effect of aldosterone blockade in patients with systolic left ventricular dysfunction: implications of the RALES and EPHESUS studies. Mol Cell Endocrinol 217:53–58

    Article  PubMed  CAS  Google Scholar 

  21. Bochud M, Nussberger J, Bovet P, Maillard MR, Elston RC, Paccaud F, Shamlaye C, Burnier M (2006) Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 48:239–245

    Article  PubMed  CAS  Google Scholar 

  22. Onozato ML, Tojo A, Kobayashi N, Goto A, Matsuoka H, Fujita T (2007) Dual blockade of aldosterone and angiotensin II additively suppresses TGF-beta and NADPH oxidase in the hypertensive kidney. Nephrol Dial Transplant 22:1314–1322

    Article  PubMed  CAS  Google Scholar 

  23. Epstein M, Buckalew V, Martinez F, Altamirano J, Roniker B, Kleiman J, Krause S (2002) Antiproteinuric efficacy of eplerenone, enalapril, and eplerenone/enalapril combination therapy in diabetic hypertensives with microalbuminuria. Am J Hypertens 15:24A

    Article  Google Scholar 

  24. Hinokio Y, Suzuki S, Hirai M, Suzuki C, Suzuki M, Toyota T (2002) Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia 45:877–882

    Article  PubMed  CAS  Google Scholar 

  25. Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T (2002) Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40:872–879

    Article  PubMed  CAS  Google Scholar 

  26. Ogihara T, Asano T, Katagiri H, Sakoda H, Anai M, Shojima N, Ono H, Fujishiro M, Kushiyama A, Fukushima A, Kikuchi M, Noguchi N, Aburatani H, Gotoh Y, Komuro I, Fujita T (2004) Oxidative stress induces insulin resistance by activating the nuclear factor-kappa B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabatologia 47:794–805

    Article  CAS  Google Scholar 

  27. Roberge C, Carpentier AC, Langlois MF, Baillargeon JP, Ardilouze JL, Maheux P, Gallo-Payet N (2007) Adrenocortical dysregulation as a major player in insulin resistance and onset of obesity. Am J Physiol Endocrinol Metab 293:E1465–E1478

    Article  PubMed  CAS  Google Scholar 

  28. Jaffe IZ, Mendelsohn ME (2005) Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res 96:643–650

    Article  PubMed  CAS  Google Scholar 

  29. Sugiyama T, Yoshimoto T, Tsuchiya K, Gochou N, Hirono Y, Tateno T, Fukai N, Shichiri M, Hirata Y (2005) Aldosterone induces angiotensin converting enzyme gene expression via a JAK2-dependent pathway in rat endothelial cells. Endocrinology 146:3900–3906

    Article  PubMed  CAS  Google Scholar 

  30. Fareh J, Touyz RM, Schiffrin EL, Thibault G (1997) Cardiac type-1 angiotensin II receptor status in deoxycorticosterone acetate-salt hypertension in rats. Hypertension 30:1253–1259

    PubMed  CAS  Google Scholar 

  31. Rocha R, Martin-Berger CL, Yang P, Scherrer R, Delyani J, McMahon E (2002) Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 143:4828–4836

    Article  PubMed  CAS  Google Scholar 

  32. Velasquez MT, Striffler JS, Abraham AA, Michaelis OE, Scalbert E, Thibault N (1997) Perindopril ameliorates glomerular and renal tubulointerstitial injury in the SHR/N-corpulent rat. Hypertension 30:1232–1237

    PubMed  CAS  Google Scholar 

  33. Nguyen G, Delarue F, Burcklé C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    PubMed  CAS  Google Scholar 

  34. Peters B, Grisk O, Becher B, Wanka H, Kuttler B, Lüdemann J, Lorenz G, Retting R, Mullins JJ, Peters J (2008) Dose-dependent titration of prorenin and blood pressure in Cyp1a1ren-2 transgenic rats: absence of prorenin-induced glomerulosclerosis. J Hypertens 26:102–109

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiro Fujita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, T. Aldosterone in salt-sensitive hypertension and metabolic syndrome. J Mol Med 86, 729–734 (2008). https://doi.org/10.1007/s00109-008-0343-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0343-1

Keywords

Navigation