Skip to main content

Advertisement

Log in

Breast cancer epigenetics: normal human mammary epithelial cells as a model system

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

DNA hypermethylation and histone modifications are two critical players involved in epigenetic regulation and together play an important role in silencing tumor-suppressor genes in all cancers, including breast cancer. One of the major challenges facing breast cancer researchers is the problem of how to identify critical genes that are epigenetically silenced early in cancer initiation as these genes provide potential early diagnostic and/or therapeutic targets for breast cancer management. This review will focus on compelling evidence that normal Human Mammary Epithelial Cells (HMECs) that escape senescence in culture mimic genetic and epigenetic events occurring in early breast cancer, and provide a valuable system to delineate the early steps in epigenetic deregulation that often occur during transition of a normal breast cell to a premalignant cell. In particular, this model system has been used to investigate the relationship between gene silencing, DNA methylation, histone modifications, and polycomb association that may occur early in oncogenic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bp:

base pairs

BMI-1:

B lymphoma Mo-MLV insertion region

BRCA1 :

breast cancer 1, early onset

CDKN2A :

cyclin dependent kinase inhibitor 2A

ChIP:

chromatin immunoprecipitation

Cox-2 :

cyclo-oxygenase 2

DNA:

deoxyribonucleic acid

DNMT:

DNA methyltransferase

EZH2:

enhancer of zeste homolog 2

H:

histone

HDAC:

histone deacetylase

HMEC:

human mammary epithelial cells

HMT:

histone methyltransferase

K:

lysine

kb:

kilobases

MBD:

methyl-C binding domain

MeCP2:

methyl CpG binding protein 2

PcG:

polycomb group

PRC:

polycomb repressive complex

Rb :

retinoblastoma 1

SUZ12:

suppressor of zeste 12

References

  1. Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56(2):106–130

    PubMed  Google Scholar 

  2. Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M (2005) Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366(9499):1784–1793

    PubMed  Google Scholar 

  3. Ghafoor A, Jemal A, Ward E, Cokkinides V, Smith R, Thun M (2003) Trends in breast cancer by race and ethnicity. CA Cancer J Clin 53(6):342–355

    PubMed  Google Scholar 

  4. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16(4):168–174

    PubMed  CAS  Google Scholar 

  5. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282

    PubMed  CAS  Google Scholar 

  6. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90(24):11995–11999

    PubMed  CAS  Google Scholar 

  7. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    PubMed  CAS  Google Scholar 

  8. Jones PA (1999) The DNA methylation paradox. Trends Genet 15(1):34–37

    PubMed  CAS  Google Scholar 

  9. Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203(4):971–983

    PubMed  CAS  Google Scholar 

  10. Yen RW, Vertino PM, Nelkin BD et al (1992) Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res 20(9):2287–2291

    PubMed  CAS  Google Scholar 

  11. Pradhan S, Esteve PO (2003) Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 109(1):6–16

    PubMed  CAS  Google Scholar 

  12. Lei H, Oh SP, Okano M et al (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122(10):3195–3205

    PubMed  CAS  Google Scholar 

  13. Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99(26):16916–16921

    PubMed  CAS  Google Scholar 

  14. Ooi SK, Qiu C, Bernstein E et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717

    PubMed  CAS  Google Scholar 

  15. Iguchi-Ariga SM, Schaffner W (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3(5):612–619

    PubMed  CAS  Google Scholar 

  16. Molloy PL, Watt F (1990) DNA methylation and specific protein–DNA interactions. Philos Trans R Soc Lond B Biol Sci 326(1235):267–275

    PubMed  CAS  Google Scholar 

  17. Nan X, Ng HH, Johnson CA et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    PubMed  CAS  Google Scholar 

  18. Jones PA, Buckley JD (1990) The role of DNA methylation in cancer. Adv Cancer Res 54:1–23

    PubMed  CAS  Google Scholar 

  19. Laird PW, Jaenisch R (1994) DNA methylation and cancer. Hum Mol Genet 3:1487–1495

    PubMed  CAS  Google Scholar 

  20. Clark SJ, Melki J (2002) DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene 21(35):5380–5387

    PubMed  CAS  Google Scholar 

  21. Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ (2002) Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21(7):1048–1061

    PubMed  CAS  Google Scholar 

  22. Stirzaker C, Song JZ, Davidson B, Clark SJ (2004) Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells. Cancer Res 64(11):3871–3877

    PubMed  CAS  Google Scholar 

  23. Baylin S, Bestor TH (2002) Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 1(4):299–305

    PubMed  CAS  Google Scholar 

  24. Yu W, Gius D, Onyango P et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451(7175):202–206

    PubMed  CAS  Google Scholar 

  25. Santini V, Kantarjian HM, Issa JP (2001) Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med 134(7):573–586

    PubMed  CAS  Google Scholar 

  26. Esteller M, Herman JG (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 196(1):1–7

    PubMed  CAS  Google Scholar 

  27. Ehrlich M, Woods CB, Yu MC et al (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors. Oncogene 25(18):2636–2645

    PubMed  CAS  Google Scholar 

  28. Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162

    PubMed  CAS  Google Scholar 

  29. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    PubMed  CAS  Google Scholar 

  30. Nishigaki M, Aoyagi K, Danjoh I et al (2005) Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 65(6):2115–2124

    PubMed  CAS  Google Scholar 

  31. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(139):868–871

    PubMed  CAS  Google Scholar 

  32. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    PubMed  CAS  Google Scholar 

  33. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  34. Allis CD, Berger SL, Cote J et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636

    PubMed  CAS  Google Scholar 

  35. Tazi J, Bird A (1990) Alternative chromatin structure at CpG islands. Cell 60(6):909–920

    PubMed  CAS  Google Scholar 

  36. Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G (2001) Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293(5539):2453–2455

    PubMed  CAS  Google Scholar 

  37. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    PubMed  CAS  Google Scholar 

  38. Ohm JE, McGarvey KM, Yu X et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237–242

    PubMed  CAS  Google Scholar 

  39. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6(11):846–856

    PubMed  CAS  Google Scholar 

  40. Vire E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874

    PubMed  CAS  Google Scholar 

  41. Ongenaert M, Van Neste L, De Meyer T, Menschaert G, Bekaert S, Van Criekinge W (2008) PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res 36(Database issue):D842–D846

    PubMed  CAS  Google Scholar 

  42. Xu CF, Solomon E (1996) Mutations of the BRCA1 gene in human cancer. Semin Cancer Biol 7(1):33–40

    PubMed  CAS  Google Scholar 

  43. Futreal PA, Liu Q, Shattuck-Eidens D et al (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266(5182):120–122

    PubMed  CAS  Google Scholar 

  44. Merajver SD, Pham TM, Caduff RF et al (1995) Somatic mutations in the BRCA1 gene in sporadic ovarian tumours. Nat Genet 9(4):439–443

    PubMed  CAS  Google Scholar 

  45. Takahashi H, Behbakht K, McGovern PE et al (1995) Mutation analysis of the BRCA1 gene in ovarian cancers. Cancer Res 55(14):2998–3002

    PubMed  CAS  Google Scholar 

  46. Hosking L, Trowsdale J, Nicolai H et al (1995) A somatic BRCA1 mutation in an ovarian tumour. Nat Genet 9(4):343–344

    PubMed  CAS  Google Scholar 

  47. Berchuck A, Heron KA, Carney ME et al (1998) Frequency of germline and somatic BRCA1 mutations in ovarian cancer. Clin Cancer Res 4(10):2433–2437

    PubMed  CAS  Google Scholar 

  48. Khoo US, Ozcelik H, Cheung AN et al (1999) Somatic mutations in the BRCA1 gene in Chinese sporadic breast and ovarian cancer. Oncogene 18(32):4643–4646

    PubMed  CAS  Google Scholar 

  49. Esteller M, Silva JM, Dominguez G et al (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92(7):564–569

    PubMed  CAS  Google Scholar 

  50. Chan KY, Ozcelik H, Cheung AN, Ngan HY, Khoo US (2002) Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res 62(14):4151–4156

    PubMed  CAS  Google Scholar 

  51. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428

    PubMed  CAS  Google Scholar 

  52. Kamb A, Gruis NA, Weaver-Feldhaus J et al (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264(5157):436–440

    PubMed  CAS  Google Scholar 

  53. Herman JG, Merlo A, Mao L et al (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55(20):4525–4530

    PubMed  CAS  Google Scholar 

  54. Gupta A, Godwin AK, Vanderveer L, Lu A, Liu J (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63(3):664–673

    PubMed  CAS  Google Scholar 

  55. Paredes J, Albergaria A, Oliveira JT, Jeronimo C, Milanezi F, Schmitt FC (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11(16):5869–5877

    PubMed  CAS  Google Scholar 

  56. Pakneshan P, Tetu B, Rabbani SA (2004) Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clin Cancer Res 10(9):3035–3041

    PubMed  CAS  Google Scholar 

  57. Bestor TH (2003) Unanswered questions about the role of promoter methylation in carcinogenesis. Ann N Y Acad Sci 983:22–27

    Article  PubMed  CAS  Google Scholar 

  58. Bachman KE, Herman JG, Corn PG et al (1999) Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 59(4):798–802

    PubMed  CAS  Google Scholar 

  59. Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25(3):315–319

    PubMed  CAS  Google Scholar 

  60. Merlo A, Herman JG, Mao L et al (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1(7):686–692

    PubMed  CAS  Google Scholar 

  61. Antequera F, Boyes J, Bird A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62(3):503–514

    PubMed  CAS  Google Scholar 

  62. Foster SA, Wong DJ, Barrett MT, Galloway DA (1998) Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol Cell Biol 18(4):1793–1801

    PubMed  CAS  Google Scholar 

  63. Jones PA, Wolkowicz MJ, Rideout WM 3rd et al (1990) De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc Natl Acad Sci USA 87(16):6117–6121

    PubMed  CAS  Google Scholar 

  64. Smiraglia DJ, Rush LJ, Fruhwald MC et al (2001) Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 10(13):1413–1419

    PubMed  CAS  Google Scholar 

  65. Ueki T, Walter KM, Skinner H, Jaffee E, Hruban RH, Goggins M (2002) Aberrant CpG island methylation in cancer cell lines arises in the primary cancers from which they were derived. Oncogene 21(13):2114–2117

    PubMed  CAS  Google Scholar 

  66. Thompson EW, Torri J, Sabol M et al (1994) Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 12(3):181–194

    PubMed  CAS  Google Scholar 

  67. Wang B, Soule HD, Miller FR (1997) Transforming and oncogenic potential of activated c-Ha-ras in three immortalized human breast epithelial cell lines. Anticancer Res 17(6D):4387–4394

    PubMed  CAS  Google Scholar 

  68. Elenbaas B, Spirio L, Koerner F et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15(1):50–65

    PubMed  CAS  Google Scholar 

  69. Rizki A, Weaver VM, Lee SY et al (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68(5):1378–1387

    PubMed  CAS  Google Scholar 

  70. Li Y, Pan J, Li JL et al (2007) Transcriptional changes associated with breast cancer occur as normal human mammary epithelial cells overcome senescence barriers and become immortalized. Mol Cancer 6:7

    PubMed  Google Scholar 

  71. Stampfer MR, Bartley JC (1985) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 82(8):2394–2398

    PubMed  CAS  Google Scholar 

  72. Hammond SL, Ham RG, Stampfer MR (1984) Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc Natl Acad Sci USA 81(17):5435–5439

    PubMed  CAS  Google Scholar 

  73. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367

    PubMed  CAS  Google Scholar 

  74. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409(6820):633–637

    PubMed  CAS  Google Scholar 

  75. Sandhu C, Donovan J, Bhattacharya N, Stampfer M, Worland P, Slingerland J (2000) Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 19(47):5314–5323

    PubMed  CAS  Google Scholar 

  76. Stampfer MR, Yaswen P, Casto BC, Schuler CF (1992) Transformation of human epithelial cells: moleculare and oncogene mechanisms. CRC, Boca Raton

    Google Scholar 

  77. Huschtscha LI, Noble JR, Neumann AA et al (1998) Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells. Cancer Res 58(16):3508–3512

    PubMed  CAS  Google Scholar 

  78. Hosobuchi M, Stampfer MR (1989) Effects of transforming growth factor beta on growth of human mammary epithelial cells in culture. In Vitro Cell Dev Biol 25(8):705–713

    PubMed  CAS  Google Scholar 

  79. Holst CR, Nuovo GJ, Esteller M et al (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63(7):1596–1601

    PubMed  CAS  Google Scholar 

  80. Brenner AJ, Stampfer MR, Aldaz CM (1998) Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene 17(2):199–205

    PubMed  CAS  Google Scholar 

  81. Crawford YG, Gauthier ML, Joubel A et al (2004) Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5(3):263–273

    PubMed  CAS  Google Scholar 

  82. Tlsty TD, Crawford YG, Holst CR et al (2004) Genetic and epigenetic changes in mammary epithelial cells may mimic early events in carcinogenesis. J Mammary Gland Biol Neoplasia 9(3):263–274

    PubMed  Google Scholar 

  83. Reynolds PA, Sigaroudinia M, Zardo G et al (2006) Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 281(34):24790–24802

    PubMed  CAS  Google Scholar 

  84. Hinshelwood RA, Huschtscha LI, Melki J et al (2007) Concordant epigenetic silencing of transforming growth factor-beta signaling pathway genes occurs early in breast carcinogenesis. Cancer Res 67(24):11517–11527

    PubMed  CAS  Google Scholar 

  85. Schlesinger Y, Straussman R, Keshet I et al (2006) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236

    PubMed  Google Scholar 

  86. Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2):157–158

    PubMed  CAS  Google Scholar 

  87. Kondo Y, Shen L, Cheng AS et al (2008) Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40(6):741–750

    PubMed  CAS  Google Scholar 

  88. Stingl J, Eirew P, Ricketson I et al (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439(7079):993–997

    PubMed  CAS  Google Scholar 

  89. Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88

    PubMed  CAS  Google Scholar 

  90. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19(12):1432–1437

    PubMed  CAS  Google Scholar 

  91. Park IK, Qian D, Kiel M et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423(6937):302–305

    PubMed  CAS  Google Scholar 

  92. Caretti G, Di Padova M, Micales B, Lyons GE, Sartorelli V (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18(21):2627–2638

    PubMed  CAS  Google Scholar 

  93. Erhardt S, Su IH, Schneider R et al (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130(18):4235–4248

    PubMed  CAS  Google Scholar 

  94. Jones PA, Taylor SM (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20(1):85–93

    PubMed  CAS  Google Scholar 

  95. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51

    PubMed  CAS  Google Scholar 

  96. Clarke RB, Bundred NJ (2005) Do early premalignant changes in normal breast epithelial cells predict cancer development? Breast Cancer Res 7(1):18–20

    PubMed  CAS  Google Scholar 

  97. Yuan J, Luo RZ, Fujii S et al (2003) Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res 63(14):4174–4180

    PubMed  CAS  Google Scholar 

  98. Van den Eynden GG, Van Laere SJ, Van der Auwera I et al (2006) Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat 95(3):219–228

    PubMed  Google Scholar 

  99. Chen ST, Lin SY, Yeh KT et al (2004) Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med 14(4):577–582

    PubMed  CAS  Google Scholar 

  100. Kim SJ, Kang HS, Chang HL et al (2008) Promoter hypomethylation of the N-acetyltransferase 1 gene in breast cancer. Oncol Rep 19(3):663–668

    PubMed  CAS  Google Scholar 

  101. Jackson K, Yu MC, Arakawa K et al (2004) DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 3(12):1225–1231

    PubMed  CAS  Google Scholar 

  102. Ferguson AT, Evron E, Umbricht CB et al (2000) High frequency of hypermethylation at the 14–3–3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97(11):6049–6054

    PubMed  CAS  Google Scholar 

  103. Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S (2001) Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 20(26):3348–3353

    PubMed  CAS  Google Scholar 

  104. Widschwendter M, Siegmund KD, Muller HM et al (2004) Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 64(11):3807–3813

    PubMed  CAS  Google Scholar 

  105. Miyamoto K, Fukutomi T, Akashi-Tanaka S et al (2005) Identification of 20 genes aberrantly methylated in human breast cancers. Int J Cancer 116(3):407–414

    PubMed  CAS  Google Scholar 

  106. Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P (2004) Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 10(18 Pt 1):6189–6193

    PubMed  CAS  Google Scholar 

  107. Fackler MJ, McVeigh M, Evron E et al (2003) DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma. Int J Cancer 107(6):970–975

    PubMed  CAS  Google Scholar 

  108. Ikeda JI, Morii E, Kimura H et al (2006) Epigenetic regulation of the expression of the novel stem cell marker CDCP1 in cancer cells. J Pathol 210(1):75–84

    PubMed  CAS  Google Scholar 

  109. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG (2000) Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275(4):2727–2732

    PubMed  CAS  Google Scholar 

  110. Toyooka KO, Toyooka S, Virmani AK et al (2001) Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61(11):4556–4560

    PubMed  CAS  Google Scholar 

  111. Kobatake T, Yano M, Toyooka S et al (2004) Aberrant methylation of p57KIP2 gene in lung and breast cancers and malignant mesotheliomas. Oncol Rep 12(5):1087–1092

    PubMed  CAS  Google Scholar 

  112. Tang D, Sivko GS, DeWille JW (2006) Promoter methylation reduces C/EBPdelta (CEBPD) gene expression in the SUM-52PE human breast cancer cell line and in primary breast tumors. Breast Cancer Res Treat 95(2):161–170

    PubMed  CAS  Google Scholar 

  113. Li X, Cowell JK, Sossey-Alaoui K (2004) CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 23(7):1474–1480

    PubMed  CAS  Google Scholar 

  114. Ai L, Kim WJ, Kim TY et al (2006) Epigenetic silencing of the tumor suppressor cystatin M occurs during breast cancer progression. Cancer Res 66(16):7899–7909

    PubMed  CAS  Google Scholar 

  115. Schagdarsurengin U, Pfeifer GP, Dammann R (2007) Frequent epigenetic inactivation of cystatin M in breast carcinoma. Oncogene 26(21):3089–3094

    PubMed  CAS  Google Scholar 

  116. Tan LW, Bianco T, Dobrovic A (2002) Variable promoter region CpG island methylation of the putative tumor suppressor gene Connexin 26 in breast cancer. Carcinogenesis 23(2):231–236

    PubMed  CAS  Google Scholar 

  117. Dote H, Toyooka S, Tsukuda K et al (2004) Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin Cancer Res 10(6):2082–2089

    PubMed  CAS  Google Scholar 

  118. Heller G, Geradts J, Ziegler B et al (2007) Downregulation of TSLC1 and DAL-1 expression occurs frequently in breast cancer. Breast Cancer Res Treat 103(3):283–291

    PubMed  CAS  Google Scholar 

  119. Seng TJ, Low JS, Li H et al (2007) The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene 26(6):934–944

    PubMed  CAS  Google Scholar 

  120. Oshiro MM, Kim CJ, Wozniak RJ et al (2005) Epigenetic silencing of DSC3 is a common event in human breast cancer. Breast Cancer Res 7(5):R669–R680

    PubMed  CAS  Google Scholar 

  121. Zochbauer-Muller S, Fong KM, Maitra A et al (2001) 5′ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 61(9):3581–3585

    PubMed  CAS  Google Scholar 

  122. Xiang YY, Ladeda V, Filmus J (2001) Glypican-3 expression is silenced in human breast cancer. Oncogene 20(50):7408–7412

    PubMed  CAS  Google Scholar 

  123. Suzuki M, Shigematsu H, Shames DS et al (2005) DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br J Cancer 93(9):1029–1037

    PubMed  CAS  Google Scholar 

  124. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG (1998) Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res 58(20):4515–4518

    PubMed  CAS  Google Scholar 

  125. Fujii H, Biel MA, Zhou W, Weitzman SA, Baylin SB, Gabrielson E (1998) Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene 16(16):2159–2164

    PubMed  CAS  Google Scholar 

  126. Raman V, Martensen SA, Reisman D et al (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405(6789):974–978

    PubMed  CAS  Google Scholar 

  127. Miyamoto K, Asada K, Fukutomi T et al (2003) Methylation-associated silencing of heparan sulfate d-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene 22(2):274–280

    PubMed  CAS  Google Scholar 

  128. Devereux TR, Horikawa I, Anna CH, Annab LA, Afshari CA, Barrett JC (1999) DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 59(24):6087–6090

    PubMed  CAS  Google Scholar 

  129. Umetani N, Mori T, Koyanagi K et al (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24(29):4721–4727

    PubMed  CAS  Google Scholar 

  130. Tomii K, Tsukuda K, Toyooka S et al (2007) Aberrant promoter methylation of insulin-like growth factor binding protein-3 gene in human cancers. Int J Cancer 120(3):566–573

    PubMed  CAS  Google Scholar 

  131. Li B, Goyal J, Dhar S et al (2001) CpG methylation as a basis for breast tumor-specific loss of NES1/kallikrein 10 expression. Cancer Res 61(21):8014–8021

    PubMed  CAS  Google Scholar 

  132. Sidiropoulos M, Pampalakis G, Sotiropoulou G, Katsaros D, Diamandis EP (2005) Downregulation of human kallikrein 10 (KLK10/NES1) by CpG island hypermethylation in breast, ovarian and prostate cancers. Tumour Biol 26(6):324–336

    PubMed  CAS  Google Scholar 

  133. Pampalakis G, Sotiropoulou G (2006) Multiple mechanisms underlie the aberrant expression of the human kallikrein 6 gene in breast cancer. Biol Chem 387(6):773–782

    PubMed  CAS  Google Scholar 

  134. Sathyanarayana UG, Padar A, Huang CX et al (2003) Aberrant promoter methylation and silencing of laminin-5-encoding genes in breast carcinoma. Clin Cancer Res 9(17):6389–6394

    PubMed  CAS  Google Scholar 

  135. Takahashi Y, Miyoshi Y, Takahata C et al (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11(4):1380–1385

    PubMed  CAS  Google Scholar 

  136. Palmisano WA, Crume KP, Grimes MJ et al (2003) Aberrant promoter methylation of the transcription factor genes PAX5 alpha and beta in human cancers. Cancer Res 63(15):4620–4625

    PubMed  CAS  Google Scholar 

  137. Ying J, Li H, Seng TJ et al (2006) Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25(7):1070–1080

    PubMed  CAS  Google Scholar 

  138. Lapidus RG, Ferguson AT, Ottaviano YL et al (1996) Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res 2(5):805–810

    PubMed  CAS  Google Scholar 

  139. Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P, Hamilton TC (2003) LOT1 (PLAGL1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24–25, is epigenetically regulated in cancer. J Biol Chem 278(8):6041–6049

    PubMed  CAS  Google Scholar 

  140. Khan S, Kumagai T, Vora J et al (2004) PTEN promoter is methylated in a proportion of invasive breast cancers. Int J Cancer 112(3):407–410

    PubMed  CAS  Google Scholar 

  141. Cheng CK, Chow LW, Loo WT, Chan TK, Chan V (2005) The cell cycle checkpoint gene Rad9 is a novel oncogene activated by 11q13 amplification and DNA methylation in breast cancer. Cancer Res 65(19):8646–8654

    PubMed  CAS  Google Scholar 

  142. Widschwendter M, Berger J, Hermann M et al (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 92(10):826–832

    PubMed  CAS  Google Scholar 

  143. Youssef EM, Chen XQ, Higuchi E et al (2004) Hypermethylation and silencing of the putative tumor suppressor Tazarotene-induced gene 1 in human cancers. Cancer Res 64(7):2411–2417

    PubMed  CAS  Google Scholar 

  144. Dammann R, Yang G, Pfeifer GP (2001) Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res 61(7):3105–3109

    PubMed  CAS  Google Scholar 

  145. Esteller M, Guo M, Moreno V et al (2002) Hypermethylation-associated Inactivation of the Cellular Retinol-Binding-Protein 1 Gene in Human Cancer. Cancer Res 62(20):5902–5905

    PubMed  CAS  Google Scholar 

  146. Du Y, Carling T, Fang W, Piao Z, Sheu JC, Huang S (2001) Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res 61(22):8094–8099

    PubMed  CAS  Google Scholar 

  147. Dallol A, Forgacs E, Martinez A et al (2002) Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 21(19):3020–3028

    PubMed  CAS  Google Scholar 

  148. Lau QC, Raja E, Salto-Tellez M et al (2006) RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res 66(13):6512–6520

    PubMed  CAS  Google Scholar 

  149. Shigematsu H, Suzuki M, Takahashi T et al (2005) Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies. Int J Cancer 113(4):600–604

    PubMed  CAS  Google Scholar 

  150. Domann FE, Rice JC, Hendrix MJ, Futscher BW (2000) Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer 85(6):805–810

    PubMed  CAS  Google Scholar 

  151. Lo PK, Mehrotra J, D’Costa A et al (2006) Epigenetic suppression of secreted frizzled related protein 1 (SFRP1) expression in human breast cancer. Cancer Biol Ther 5(3):281–286

    Article  PubMed  CAS  Google Scholar 

  152. Veeck J, Niederacher D, An H et al (2006) Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25(24):3479–3488

    PubMed  CAS  Google Scholar 

  153. Dallol A, Da Silva NF, Viacava P et al (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62(20):5874–5880

    PubMed  CAS  Google Scholar 

  154. Xu XL, Wu LC, Du F et al (2001) Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res 61(21):7943–7949

    PubMed  CAS  Google Scholar 

  155. Kwon MS, Kim SJ, Lee SY, Jeong JH, Lee ES, Kang HS (2006) Epigenetic silencing of the sulfotransferase 1A1 gene by hypermethylation in breast tissue. Oncol Rep 15(1):27–32

    PubMed  CAS  Google Scholar 

  156. Yuan Y, Mendez R, Sahin A, Dai JL (2001) Hypermethylation leads to silencing of the SYK gene in human breast cancer. Cancer Res 61(14):5558–5561

    PubMed  CAS  Google Scholar 

  157. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 60(22):6236–6242

    PubMed  CAS  Google Scholar 

  158. Varga AE, Stourman NV, Zheng Q et al (2005) Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 24(32):5043–5052

    PubMed  CAS  Google Scholar 

  159. Jiang WG, Sampson J, Martin TA et al (2005) Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 41(11):1628–1636

    PubMed  CAS  Google Scholar 

  160. Evron E, Dooley WC, Umbricht CB et al (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357(9265):1335–1336

    PubMed  CAS  Google Scholar 

  161. Ai L, Tao Q, Zhong S et al (2006) Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27(7):1341–1348

    PubMed  CAS  Google Scholar 

  162. Agrelo R, Cheng WH, Setien F et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci USA 103(23):8822–8827

    PubMed  CAS  Google Scholar 

  163. Laux DE, Curran EM, Welshons WV, Lubahn DB, Huang TH (1999) Hypermethylation of the Wilms’ tumor suppressor gene CpG island in human breast carcinomas. Breast Cancer Res Treat 56(1):35–43

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

RAH is supported by a Dora Lush Biomedical Postgraduate Scholarship from the National Health and Medical Research Council (NH&MRC) and in part by a Cancer Institute NSW (CI NSW) Research Scholar Award and a National Breast Cancer Foundation (NBCF) Excellence Award. SJC is supported by an NH&MRC fellowship and NH&MRC project grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinshelwood, R.A., Clark, S.J. Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86, 1315–1328 (2008). https://doi.org/10.1007/s00109-008-0386-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0386-3

Keywords

Navigation