Skip to main content
Log in

Non-hypoxic stabilization of HIF-Iα during coordinated interaction between Akt and angiopoietin-1 enhances endothelial commitment of bone marrow stem cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We previously reported that mesenchymal stem cells (MSC) co-expressing Akt and angiopoietin-1 (Ang-1) preserved infarcted heart function via angiomyogenesis. The present study determined the mechanism of co-overexpression of Akt and Ang-1 in promoting endothelial commitment of MSC. The cells were transduced with vectors encoding for Akt (AktMSC), Ang-1 (Ang-1MSC), and both Akt and Ang-1 (AAMSC) using Empty vector transduced MSC (EmpMSC) as control. Molecular studies indicated a coordinated interaction between Akt and Ang-1 in AAMSC and led to non-hypoxic stabilization of hypoxia inducible factor-1α (HIF-Iα) which accentuated under 4-h anoxia. We also observed HIF-Iα dependent induction of hemeoxygenase-1, endothelial specific markers and VEGF in AAMSC. Vascular commitment of AAMSC was confirmed by immunostaining, Western blotting and flow cytometry for endothelial specific early and late markers including Flt1, Flk1, Tie2, VCAM-1, and von Willebrand Factor-VIII (vWF-VIII) in HIF-Iα dependent fashion besides exhibiting higher emigrational activity and angiogenesis in vitro. AAMSC transplanted into rat model of myocardial infarction showed higher Flk1 and Flt1 positivity and also promoted intrinsic Flk1+ and Flt1+ cell mobilization into the infarcted heart. Given the ease of availability of MSC and simplicity of approach to co-overexpress Ang-1 and Akt to enhance their endothelial commitment, the strategy will be significant for cellular angiogenesis to treat ischemic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ang-1:

Angiopoietin-1

BM:

Bone marrow

DMEM:

Dulbecco’s Modified Eagle Medium

HIF-Iα:

Hypoxia inducible factor-1α

HO-1:

Hemeoxygenase-1

AAMSC:

Mesenchymal stem cells overexpressing Akt and angiopoietin-1

EmpMSC:

Empty vector trnasduced MSC

MSC:

Mesenchymal stem cells

PGF:

Placental growth factor

VEGF:

Vascular endothelial growth factor

Sc:

Scramble

References

  1. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14:840–850

    Article  PubMed  CAS  Google Scholar 

  2. Haider H, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103:1300–1308

    Article  PubMed  CAS  Google Scholar 

  3. Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK (2005) Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 112:I123–I128

    Article  PubMed  Google Scholar 

  4. Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98:1414–1421

    Article  PubMed  CAS  Google Scholar 

  5. Jiang S, Haider H, Idris NM, Salim A, Ashraf M (2006) Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 99:776–784

    Article  PubMed  CAS  Google Scholar 

  6. Duffy GP, D'Arcy S, Ahsan T, Nerem RM, O'Brien T, Barry F (2010) Mesenchymal stem cells overexpressing ephrin-b2 rapidly adopt an early endothelial phenotype with simultaneous reduction of osteogenic potential. Tissue Eng Part A 16:2755–2768

    Article  PubMed  CAS  Google Scholar 

  7. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201

    Article  PubMed  CAS  Google Scholar 

  8. Kim SH, Moon HH, Kim HA, Hwang KC, Lee M, Choi D (2010) Hypoxia-inducible vascular endothelial growth factor-engineered mesenchymal stem cells prevent myocardial ischemic injury. Mol Ther 19:741–750

    Article  Google Scholar 

  9. Ye L, Haider H, Jiang S, Tan RS, Toh WC, Ge R, Sim EK (2007) Angiopoietin-1 for myocardial angiogenesis: a comparison between delivery strategies. Eur J Heart Fail 9:458–465

    Article  PubMed  CAS  Google Scholar 

  10. Shujia J, Haider HK, Idris NM, Lu G, Ashraf M (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77:525–533

    Article  PubMed  CAS  Google Scholar 

  11. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162

    Article  PubMed  CAS  Google Scholar 

  12. Lee BL, Kim WH, Jung J, Cho SJ, Park JW, Kim J, Chung HY, Chang MS, Nam SY (2008) A hypoxia-independent up-regulation of hypoxia-inducible factor-1 by Akt contributes to angiogenesis in human gastric cancer. Carcinogenesis 29:44–51

    Article  PubMed  CAS  Google Scholar 

  13. Kim HW, Haider HK, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284:33161–33168

    Article  PubMed  Google Scholar 

  14. Ahmed RP, Haider KH, Shujia J, Afzal MR, Ashraf M (2010) Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PLoS One 5:e8576

    Article  PubMed  Google Scholar 

  15. Krause DS (2002) Plasticity of marrow-derived stem cells. Gene Ther 9:754–958

    Article  PubMed  CAS  Google Scholar 

  16. Daly C, Wong V, Burova E, Wei Y, Zabski S, Griffiths J, Lai KM, Lin HC, Ioffe E, Yancopoulos GD et al (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18:1060–1071

    Article  PubMed  CAS  Google Scholar 

  17. DeBusk LM, Hallahan DE, Lin PC (2004) Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Exp Cell Res 298:167–177

    Article  PubMed  CAS  Google Scholar 

  18. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242

    Article  PubMed  CAS  Google Scholar 

  19. Misra S, Fu AA, Misra KD, Shergill UM, Leof EB, Mukhopadhyay D (2010) Hypoxia-induced phenotypic switch of fibroblasts to myofibroblasts through a matrix metalloproteinase 2/tissue inhibitor of metalloproteinase-mediated pathway: implications for venous neointimal hyperplasia in hemodialysis access. J Vasc Interv Radiol 21:896–902

    Article  PubMed  Google Scholar 

  20. Lange C, Heynen SR, Tanimoto N, Thiersch M, Le YZ, Meneau I, Seeliger MW, Samardzija M, Caprara C, Grimm C (2011) Normoxic activation of hypoxia inducible factors in photoreceptors provides transient protection against light induced retinal degeneration. Invest Ophthalmol Vis Sci 52:5872–5880

    Article  PubMed  Google Scholar 

  21. Palladino MA, Pirlamarla PR, McNamara J, Sottas CM, Korah N, Hardy MP, Hales DB, Hermo L (2011) Normoxic expression of hypoxia-inducible factor 1 in rat Leydig cells in vivo and in vitro. J Androl 32:307–323

    Article  PubMed  CAS  Google Scholar 

  22. Xu J, Peng Z, Li R, Dou T, Xu W, Gu G, Liu Y, Kang Z, Tao H, Zhang JH (2009) Normoxic induction of cerebral HIF-Ialpha by acetazolamide in rats: role of acidosis. Neurosci Lett 451:274–278

    Article  PubMed  CAS  Google Scholar 

  23. Carver DJ, Gaston B, Deronde K, Palmer LA (2007) Akt-mediated activation of HIF-I in pulmonary vascular endothelial cells by S-nitrosoglutathione. Am J Respir Cell Mol Biol 37:255–263

    Article  PubMed  CAS  Google Scholar 

  24. Chen JX, Stinnett A (2008) Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-Ialpha)-prolyl-4-hydroxylase-2, stabilizes HIF-Ialpha expression, and normalizes immature vasculature in db/db mice. Diabetes 57:3335–3343

    Article  PubMed  CAS  Google Scholar 

  25. Alam H, Weck J, Maizels E, Park Y, Lee EJ, Ashcroft M, Hunzicker-Dunn M (2009) Role of the phosphatidylinositol-3-kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF-I)-1 activity and the HIF-I target vascular endothelial growth factor in ovarian granulosa cells in response to follicle-stimulating hormone. Endocrinology 150:915–928

    Article  PubMed  CAS  Google Scholar 

  26. Huang H, Tindall DJ (2007) Dynamic FoxO transcription factors. J Cell Sci 120:2479–2487

    Article  PubMed  CAS  Google Scholar 

  27. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92:365–371

    CAS  Google Scholar 

  28. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583

    Article  PubMed  CAS  Google Scholar 

  29. Ryu JK, Cho CH, Shin HY, Song SU, Oh SM, Lee M, Piao S, Han JY, Kim IH, Koh GY et al (2006) Combined angiopoietin-1 and vascular endothelial growth factor gene transfer restores cavernous angiogenesis and erectile function in a rat model of hypercholesterolemia. Mol Ther 13:705–715

    Article  PubMed  CAS  Google Scholar 

  30. Okuyama H, Krishnamachary B, Zhou YF, Nagasawa H, Bosch-Marce M, Semenza GL (2006) Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J Biol Chem 281:15554–15563

    Article  PubMed  CAS  Google Scholar 

  31. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346

    PubMed  CAS  Google Scholar 

  32. Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135

    Article  PubMed  Google Scholar 

  33. Angiopoietins RY (2010) Recent Results Cancer Res 180:3–13

    Article  Google Scholar 

  34. Askari A, Unzek S, Goldman CK, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2004) Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol 43:1908–1914

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants# [R37 HL074272;HL-080686;HL-087246 (M.A) and HL-087288;HL-089535; HL106190-01 (Kh.H.H)].

Conflict of Interest Disclosure Statement

Nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husnain Kh Haider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, V.K., Afzal, M.R., Ashraf, M. et al. Non-hypoxic stabilization of HIF-Iα during coordinated interaction between Akt and angiopoietin-1 enhances endothelial commitment of bone marrow stem cells. J Mol Med 90, 719–730 (2012). https://doi.org/10.1007/s00109-011-0852-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0852-1

Keywords

Navigation