Skip to main content
Log in

Conditional loss of kidney microRNAs results in congenital anomalies of the kidney and urinary tract (CAKUT)

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

MicroRNAs have emerged as essential regulators of gene expression and may play important roles in a variety of human disorders. To understand the role of microRNA-mediated gene regulation in the kidney, we deleted the microRNA-processing enzyme Dicer in developing renal tubules and parts of the ureteric bud in mice. Genetic deletion of Dicer resulted in renal failure and death of the animals at 4–6 weeks of age. Interestingly, the kidneys of microRNA-deficient animals were small due to a reduced number of nephrons and showed massive hydronephrosis due to ureteropelvic junction obstruction. This phenotype is reminiscent of congenital anomalies of the kidney and urinary tract (CAKUT), an important group of human disorders characterized by a combination of renal hypoplasia with congenital abnormalities of the urinary tract. We used metanephric kidney cultures to examine the developmental defects underlying these pathologies. Dicer knockout kidneys showed a significant reduction of tubular branching explaining renal hypoplasia. Moreover, the ureters of these kidneys showed an altered morphology and impaired motility. These functional changes went along with altered expression of smooth muscle actin implying a defect in the differentiation of ureteric smooth muscle cells. In addition, we show the polycystic kidney disease gene Pkd1 to be a target of miR-20 implying that this interaction may contribute to the molecular basis for the cystogenesis in our model. In conclusion, these data demonstrate an essential role for microRNA-dependent gene regulation in mammalian kidney development and suggest that deregulation of microRNAs may underlie CAKUT, the most important group of renal disorders in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  PubMed  CAS  Google Scholar 

  2. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187

    Article  PubMed  CAS  Google Scholar 

  3. Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138:1653–1661

    Article  PubMed  CAS  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  5. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  PubMed  CAS  Google Scholar 

  6. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167

    Article  PubMed  CAS  Google Scholar 

  7. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  PubMed  CAS  Google Scholar 

  8. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  PubMed  CAS  Google Scholar 

  9. Saal S, Harvey SJ (2009) MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18:317–323

    Article  PubMed  CAS  Google Scholar 

  10. Chandrasekaran K, Karolina DS, Sepramaniam S, Armugam A, Wintour EM, Bertram JF, Jeyaseelan K (2012) Role of microRNAs in kidney homeostasis and disease. Kidney Int 81:617–627

    Article  PubMed  CAS  Google Scholar 

  11. Ho J, Kreidberg JA (2012) The long and short of microRNAs in the kidney. J Am Soc Nephrol 23:400–404

    Article  PubMed  CAS  Google Scholar 

  12. Lorenzen JM, Haller H, Thum T (2011) MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol 7:286–294

    Article  PubMed  CAS  Google Scholar 

  13. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, Merkenschlager M, Holzman LB, Zhang W, Mundel P et al (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169

    Article  PubMed  CAS  Google Scholar 

  14. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA (2008) Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 19:2069–2075

    Article  PubMed  CAS  Google Scholar 

  15. Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, McManus MT, Benzing T, Miner JH (2008) Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 19:2150–2158

    Article  PubMed  CAS  Google Scholar 

  16. Sequeira-Lopez ML, Weatherford ET, Borges GR, Monteagudo MC, Pentz ES, Harfe BD, Carretero O, Sigmund CD, Gomez RA (2010) The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol 21:460–467

    Article  PubMed  CAS  Google Scholar 

  17. Song R, Yosypiv IV (2011) Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 26:353–364

    Article  PubMed  Google Scholar 

  18. Renkema KY, Winyard PJ, Skovorodkin IN, Levtchenko E, Hindryckx A, Jeanpierre C, Weber S, Salomon R, Antignac C, Vainio S et al (2011) Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrol Dial Transplant 26:3843–3851

    Article  PubMed  Google Scholar 

  19. Sanna-Cherchi S, Caridi G, Weng PL, Scolari F, Perfumo F, Gharavi AG, Ghiggeri GM (2007) Genetic approaches to human renal agenesis/hypoplasia and dysplasia. Pediatr Nephrol 22:1675–1684

    Article  PubMed  Google Scholar 

  20. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102:10898–10903

    Article  PubMed  CAS  Google Scholar 

  21. Shao X, Somlo S, Igarashi P (2002) Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J Am Soc Nephrol 13:1837–1846

    Article  PubMed  CAS  Google Scholar 

  22. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605

    Article  PubMed  CAS  Google Scholar 

  23. Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    PubMed  CAS  Google Scholar 

  24. Shao X, Johnson JE, Richardson JA, Hiesberger T, Igarashi P (2002) A minimal Ksp-cadherin promoter linked to a green fluorescent protein reporter gene exhibits tissue-specific expression in the developing kidney and genitourinary tract. J Am Soc Nephrol 13:1824–1836

    Article  PubMed  CAS  Google Scholar 

  25. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, Perera RJ (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32:e188

    Article  PubMed  Google Scholar 

  26. Pastorelli LM, Wells S, Fray M, Smith A, Hough T, Harfe BD, McManus MT, Smith L, Woolf AS, Cheeseman M et al (2009) Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 20:140–151

    Article  PubMed  Google Scholar 

  27. Patel V, Hajarnis S, Williams D, Hunter R, Huynh D, Igarashi P (2012) MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol 23:1941–1948

    Article  PubMed  CAS  Google Scholar 

  28. Nagalakshmi VK, Ren Q, Pugh MM, Valerius MT, McMahon AP, Yu J (2011) Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 79:317–330

    Article  PubMed  CAS  Google Scholar 

  29. Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D (2010) Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 328:327–334

    Article  PubMed  CAS  Google Scholar 

  30. Havens MA, Reich AA, Duelli DM, Hastings ML (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res

  31. Zhdanova O, Srivastava S, Di L, Li Z, Tchelebi L, Dworkin S, Johnstone DB, Zavadil J, Chong MM, Littman DR et al (2011) The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int 80:719–730

    Article  PubMed  CAS  Google Scholar 

  32. Woolf AS, Price KL, Scambler PJ, Winyard PJ (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007

    Article  PubMed  Google Scholar 

  33. Waters AM, Rosenblum ND (2012) Overview of congenital anomalies of the kidney and urinary tract (CAKUT). UpToDate, Waltham, MA

  34. Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS et al (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135:3301–3310

    Article  PubMed  CAS  Google Scholar 

  35. Airik R, Kispert A (2007) Down the tube of obstructive nephropathies: the importance of tissue interactions during ureter development. Kidney Int 72:1459–1467

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312

    PubMed  CAS  Google Scholar 

  37. Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT, Baskerville S, Bartel DP, Tabin CJ (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438:671–674

    Article  PubMed  CAS  Google Scholar 

  38. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    Article  PubMed  CAS  Google Scholar 

  39. Hu G, Drescher KM, Chen XM (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56

    PubMed  CAS  Google Scholar 

  40. Kang H, Davis-Dusenbery BN, Nguyen PH, Lal A, Lieberman J, Van Aelst L, Lagna G, Hata A (2012) Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 287:3976–3986

    Article  PubMed  CAS  Google Scholar 

  41. Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G et al (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A 106:2812–2817

    Article  PubMed  CAS  Google Scholar 

  42. Radzikinas K, Aven L, Jiang Z, Tran T, Paez-Cortez J, Boppidi K, Lu J, Fine A, Ai X (2011) A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci 31:15407–15415

    Article  PubMed  CAS  Google Scholar 

  43. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  44. Trudel M, D’Agati V, Costantini F (1991) C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 39:665–671

    Article  PubMed  CAS  Google Scholar 

  45. Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137:1107–1116

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft [grant numbers SCHE1562/1 and SFB832 to B.S.; BE2212, SFB635, and SFB829 to T.B.] and by the Center for Molecular Medicine Cologne [to T.B. and B.S.]. We are grateful to Peter Igarashi for providing the KspCre-expressing mouse line, to Michael J. Caplan for providing PKD1 cDNA and to Frank Costantini for sharing unpublished data. We would like to thank Katrin Walter, Ruth Herzog, Stefanie Keller, Sonja Kunath, Nadine Urban, and Bettina Maar for excellent technical support with the animal study and microRNA experiments.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schermer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 4213 kb)

ESM 2

(AVI 3372 kb)

(AVI 3892 kb)

ESM 4

(AVI 3846 kb)

ESM 5

(PDF 1831 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartram, M.P., Höhne, M., Dafinger, C. et al. Conditional loss of kidney microRNAs results in congenital anomalies of the kidney and urinary tract (CAKUT). J Mol Med 91, 739–748 (2013). https://doi.org/10.1007/s00109-013-1000-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1000-x

Keywords

Navigation