Skip to main content

Advertisement

Log in

The brain metastatic niche

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Metastasizing cancer cells that arrest in brain microvessels have to face an organ microenvironment that is alien, and exclusive. In order to survive and thrive in this foreign soil, the malignant cells need to successfully master a sequence of steps that includes close interactions with pre-existing brain microvessels, and other nonmalignant cell types. Unfortunately, a relevant number of circulating cancer cells is capable of doing so: brain metastasis is a frequent and devastating complication of solid tumors, becoming ever more important in times where the systemic tumor disease is better controlled and life of cancer patients is prolonged. Thus, it is very important to understand which environmental cues are necessary for effective brain colonization. This review gives an overview of the niches we know, including those who govern cancer cell dormancy, survival, and proliferation in the brain. Colonization of pre-existing niches related to stemness and resistance is a hallmark of successful brain metastasis. A deeper understanding of those host factors can help to identify the most vulnerable steps of the metastatic cascade, which might be most amenable to therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Preusser M, Capper D, Ilhan-Mutlu A, Berghoff AS, Birner P, Bartsch R, Marosi C, Zielinski C, Mehta MP, Winkler F et al (2012) Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol 123:205–22

    Article  CAS  PubMed  Google Scholar 

  2. Steeg PS, Camphausen KA, Smith QR (2011) Brain metastases as preventive and therapeutic targets. Nat Rev Cancer 11:352–63

    Article  CAS  PubMed  Google Scholar 

  3. Davis FG, Dolecek TA, McCarthy BJ, Villano JL (2012) Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro-Oncology 14:1171–7

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kienast Y, Winkler F (2010) Therapy and prophylaxis of brain metastases. Expert Rev Anticancer Ther 10:1763–77

    Article  PubMed  Google Scholar 

  5. Ahluwalia MS, Winkler F (2015) Targeted and immunotherapeutic approaches in brain metastases. Am Soc Clin Oncol Edu Book 35:67–74

    Article  Google Scholar 

  6. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Duda DG, Jain RK (2010) Premetastatic lung “niche”: is vascular endothelial growth factor receptor 1 activation required? Cancer Res 70:5670–3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    Article  CAS  PubMed  Google Scholar 

  9. Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O’Connor ST, Li S, Chin AR et al (2015) Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol 17:183–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kang SA, Hasan N, Mann AP, Zheng W, Zhao L, Morris L, Zhu W, Zhao YD, Suh KS, Dooley WC et al (2015) Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis. Mol Ther 23:1044–54

    Article  CAS  PubMed  Google Scholar 

  11. Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72:648–72

    Article  CAS  PubMed  Google Scholar 

  12. Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA et al (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res 16:5664–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Pitz MW, Desai A, Grossman SA, Blakeley JO (2011) Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neuro-Oncol 104:629–38

    Article  CAS  Google Scholar 

  14. Barlesi F, Gervais R, Lena H, Hureaux J, Berard H, Paillotin D, Bota S, Monnet I, Chajara A, Robinet G (2011) Pemetrexed and cisplatin as first-line chemotherapy for advanced non-small-cell lung cancer (NSCLC) with asymptomatic inoperable brain metastases: a multicenter phase II trial (GFPC 07-01). Ann Oncol 22:2466–70

    Article  CAS  PubMed  Google Scholar 

  15. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–41

    Article  CAS  PubMed  Google Scholar 

  16. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rolland Y, Demeule M, Fenart L, Beliveau R (2009) Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell Melanoma Res 22:86–98

    Article  CAS  PubMed  Google Scholar 

  18. Li B, Zhao WD, Tan ZM, Fang WG, Zhu L, Chen YH (2006) Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett 580:4252–60

    Article  CAS  PubMed  Google Scholar 

  19. Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–38

    CAS  PubMed  Google Scholar 

  20. Sevenich L, Bowman RL, Mason SD, Quail DF, Rapaport F, Elie BT, Brogi E, Brastianos PK, Hahn WC, Holsinger LJ et al (2014) Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 16:876–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, Lotvall J, Nakagama H, Ochiya T (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6:6716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wolff G, Davidson SJ, Wrobel JK, Toborek M (2015) Exercise maintains blood-brain barrier integrity during early stages of brain metastasis formation. Biochem Biophys Res Commun 463:811–7

    Article  CAS  PubMed  Google Scholar 

  23. Felding-Habermann B, O’Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil SJ, Saven A et al (2001) Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A 98:1853–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Malin D, Strekalova E, Petrovic V, Deal AM, Al Ahmad A, Adamo B, Miller CR, Ugolkov A, Livasy C, Fritchie K et al (2014) alphaB-crystallin: a novel regulator of breast cancer metastasis to the brain. Clin Cancer Res 20:56–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fan J, Cai B, Zeng M, Hao Y, Giancotti FG, Fu BM (2011) Integrin beta4 signaling promotes mammary tumor cell adhesion to brain microvascular endothelium by inducing ErbB2-mediated secretion of VEGF. Ann Biomed Eng 39:2223–41

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lorger M, Krueger JS, O’Neal M, Staflin K, Felding-Habermann B (2009) Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proc Natl Acad Sci U S A 106:10666–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–84

    Article  CAS  PubMed  Google Scholar 

  28. Avraham HK, Jiang S, Fu Y, Nakshatri H, Ovadia H, Avraham S (2014) Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J Pathol 232:369–81

    Article  CAS  PubMed  Google Scholar 

  29. Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4:e5857

    Article  PubMed Central  PubMed  Google Scholar 

  30. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, Chaft JE, Kris MG, Huse JT, Brogi E et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ghajar CM (2015) Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15:238–47

    Article  CAS  PubMed  Google Scholar 

  32. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, Almeida D, Koller A, Hajjar KA, Stainier DY et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–17

    Article  CAS  PubMed  Google Scholar 

  33. Goldman SA, Chen Z (2011) Perivascular instruction of cell genesis and fate in the adult brain. Nat Neurosci 14:1382–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–35

    Article  CAS  PubMed  Google Scholar 

  35. Xie TX, Huang FJ, Aldape KD, Kang SH, Liu M, Gershenwald JE, Xie K, Sawaya R, Huang S (2006) Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 66:3188–3196

    Article  CAS  PubMed  Google Scholar 

  36. Kim LS, Huang S, Lu W, Lev DC, Price JE (2004) Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin Exp Metastasis 21:107–118

    Article  CAS  PubMed  Google Scholar 

  37. Kusters B, Leenders WP, Wesseling P, Smits D, Verrijp K, Ruiter DJ, Peters JP, van Der Kogel AJ, de Waal RM (2002) Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 62:341–345

    CAS  PubMed  Google Scholar 

  38. Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, Davis DW, McConkey DJ, Fidler IJ (2000) Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60:4959–4967

    CAS  PubMed  Google Scholar 

  39. Heinecke JL, Ridnour LA, Cheng RY, Switzer CH, Lizardo MM, Khanna C, Glynn SA, Hussain SP, Young HA, Ambs S et al (2014) Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc Natl Acad Sci U S A 111:6323–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  41. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Charles N, Ozawa T, Squatrito M, Bleau AM, Brennan CW, Hambardzumyan D, Holland EC (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6:141–152

    Article  CAS  PubMed  Google Scholar 

  43. Eyler CE, Wu Q, Yan K, MacSwords JM, Chandler-Militello D, Misuraca KL, Lathia JD, Forrester MT, Lee J, Stamler JS et al (2011) Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 146:53–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Andreu-Agullo C, Morante-Redolat JM, Delgado AC, Farinas I (2009) Vascular niche factor PEDF modulates Notch-dependent stemness in the adult subependymal zone. Nat Neurosci 12:1514–23

    Article  CAS  PubMed  Google Scholar 

  45. Xing F, Kobayashi A, Okuda H, Watabe M, Pai SK, Pandey PR, Hirota S, Wilber A, Mo YY, Moore BE et al (2013) Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 5:384–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Nam DH, Jeon HM, Kim S, Kim MH, Lee YJ, Lee MS, Kim H, Joo KM, Lee DS, Price JE et al (2008) Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res 14:4059–4066

    Article  CAS  PubMed  Google Scholar 

  47. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT, Mikulis DJ, Palmieri D, Bronder JL, Steeg PS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010

    Article  PubMed  Google Scholar 

  48. Osswald M, Winkler F (2013) Insights into cell-to-cell and cell-to-blood-vessel communications in the brain: in vivo multiphoton microscopy. Cell Tissue Res 352:149–59

    Article  CAS  PubMed  Google Scholar 

  49. Marchetti D, Li J, Shen R (2000) Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 60:4767–70

    CAS  PubMed  Google Scholar 

  50. Sierra A, Price JE, Garcia-Ramirez M, Mendez O, Lopez L, Fabra A (1997) Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab Investig 77:357–68

    CAS  PubMed  Google Scholar 

  51. Mendes O, Kim HT, Lungu G, Stoica G (2007) MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin Exp Metastasis 24:341–51

    Article  CAS  PubMed  Google Scholar 

  52. Lin Q, Balasubramanian K, Fan D, Kim SJ, Guo L, Wang H, Bar-Eli M, Aldape KD, Fidler IJ (2010) Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12:748–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kim SJ, Kim JS, Park ES, Lee JS, Lin Q, Langley RR, Maya M, He J, Kim SW, Weihua Z et al (2011) Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13:286–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Kim SW, Choi HJ, Lee HJ, He J, Wu Q, Langley RR, Fidler IJ, Kim SJ (2014) Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells. Neuro-Oncology 16:1585–98

    Article  PubMed  Google Scholar 

  55. Le HT, Sin WC, Lozinsky S, Bechberger J, Vega JL, Guo XQ, Saez JC, Naus CC (2014) Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J Biol Chem 289:1345–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Berghoff AS, Lassmann H, Preusser M, Hoftberger R (2013) Characterization of the inflammatory response to solid cancer metastases in the human brain. Clin Exp Metastasis 30:69–81

    Article  CAS  PubMed  Google Scholar 

  57. Brantley EC, Guo L, Zhang C, Lin Q, Yokoi K, Langley RR, Kruzel E, Maya M, Kim SW, Kim SJ et al (2010) Nitric oxide-mediated tumoricidal activity of murine microglial cells. Transl Oncol 3:380–8

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hwang SY, Yoo BC, Jung JW, Oh ES, Hwang JS, Shin JA, Kim SY, Cha SH, Han IO (2009) Induction of glioma apoptosis by microglia-secreted molecules: the role of nitric oxide and cathepsin B. Biochim Biophys Acta 1793:1656–68

    Article  CAS  PubMed  Google Scholar 

  59. Louie E, Chen XF, Coomes A, Ji K, Tsirka S, Chen EI (2013) Neurotrophin-3 modulates breast cancer cells and the microenvironment to promote the growth of breast cancer brain metastasis. Oncogene 32:4064–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Pukrop T, Dehghani F, Chuang HN, Lohaus R, Bayanga K, Heermann S, Regen T, Van Rossum D, Klemm F, Schulz M et al (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58:1477–89

    PubMed  Google Scholar 

  61. Termini J, Neman J, Jandial R (2014) Role of the neural niche in brain metastatic cancer. Cancer Res 74:4011–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Denkins Y, Reiland J, Roy M, Sinnappah-Kang ND, Galjour J, Murry BP, Blust J, Aucoin R, Marchetti D (2004) Brain metastases in melanoma: roles of neurotrophins. Neuro-Oncology 6:154–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, Kowolik CM, Li H, Hambrecht AC, Roberts E, Jandial R (2014) Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A 111:984–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS et al (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:803–16

    Article  CAS  PubMed  Google Scholar 

  65. Winkler F, Kienast Y, Fuhrmann M, von Baumgarten L, Burgold S, Mitteregger G, Kretzschmar H, Herms J (2009) Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia 57:1306–1315

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the German Research Foundation (DFG), WI 1930/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Winkler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, F. The brain metastatic niche. J Mol Med 93, 1213–1220 (2015). https://doi.org/10.1007/s00109-015-1357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1357-0

Keywords

Navigation