Skip to main content
Log in

Cardiomyocyte-derived CXCL12 is not involved in cardiogenesis but plays a crucial role in myocardial infarction

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The chemokine CXCL12/SDF-1 is crucial for heart development and affects cardiac repair processes due to its ability to attract leukocytes and stem cells to injured myocardium. However, there is a great controversy whether CXCL12 is beneficial or detrimental after myocardial infarction (MI). The divergence in the reported CXCL12 actions may be due to the cellular source and time of release of the chemokine after MI. This study was designed to evaluate the role of cardiomyocyte-derived CXCL12 for cardiogenesis and heart repair after MI. We generated two rodent models each targeting CXCL12 in only one cardiac cell type: cardiomyocyte-specific CXCL12-overexpressing transgenic (Tg) rats and CXCL12 conditional knockout (cKO) mice. Animals of both models did not show any signs of cardiac abnormalities under baseline conditions. After induction of MI, cKO mice displayed preserved cardiac function and remodeling. Moreover, fibrosis was less pronounced in the hearts of cKO mice after MI. Accordingly, CXCL12 Tg rats revealed impaired cardiac function post-MI accompanied by enhanced fibrosis. Furthermore, we observed decreased numbers of infiltrating Th1 cells in the hearts of cKO mice. Collectively, our findings demonstrate that cardiomyocyte-derived CXCL12 is not involved in cardiac development but has adverse effects on the heart after injury via promotion of inflammation and fibrosis.

Key messages

• CXCL12 in cardiomyocytes is not involved in cardiac development.

• CXCL12 deficiency in cardiomyocytes improves outcome of myocardial infarction.

• CXCL12 overexpression in cardiomyocytes worsens outcome of myocardial infarction.

• CXCL12 increases fibrosis and invasion of Th1 cells in the heart after infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nagasawa T (2014) CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 92:433–439

    Article  CAS  Google Scholar 

  2. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382:635–638

    Article  CAS  PubMed  Google Scholar 

  3. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  PubMed  Google Scholar 

  4. Pillarisetti K, Gupta SK (2001) Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation 25:293–300

    Article  CAS  PubMed  Google Scholar 

  5. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  PubMed  Google Scholar 

  6. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    Article  CAS  PubMed  Google Scholar 

  7. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE et al (2007) Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C et al (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 43:333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41:334–341

    Article  CAS  PubMed  Google Scholar 

  10. Mehta NN, Li M, William D, Khera AV, DerOhannessian S, Qu L, Ferguson JF, McLaughlin C, Shaikh LH, Shah R et al (2011) The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur Heart J 32:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mehta NN, Matthews GJ, Krishnamoorthy P, Shah R, McLaughlin C, Patel P, Budoff M, Chen J, Wolman M, Go A et al (2014) Higher plasma CXCL12 levels predict incident myocardial infarction and death in chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort study. Eur Heart J 35:2115–2122

    Article  CAS  PubMed  Google Scholar 

  12. Subramanian S, Liu C, Aviv A, Ho JE, Courchesne P, Muntendam P, Larson MG, Cheng S, Wang TJ, Mehta NN et al (2014) Stromal cell-derived factor 1 as a biomarker of heart failure and mortality risk. Arterioscler Thromb Vasc Biol 34:2100–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Uematsu M, Yoshizaki T, Shimizu T, Obata JE, Nakamura T, Fujioka D, Watanabe K, Watanabe Y, Kugiyama K (2015) Sustained myocardial production of stromal cell-derived factor-1alpha was associated with left ventricular adverse remodeling in patients with myocardial infarction. Am J Physiol Heart Circ Physiol 309:H1764–H1771

    CAS  PubMed  Google Scholar 

  14. Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J, Guo Y, Bolli R, Rokosh G (2007) Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation 116:654–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saxena A, Fish JE, White MD, Yu S, Smyth JW, Shaw RM, DiMaio JM, Srivastava D (2008) Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation 117:2224–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elmadbouh I, Haider HK, Jiang S, Idris NM, Lu G, Ashraf M (2007) Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J Mol Cell Cardiol 42:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Segers VF, Tokunou T, Higgins LJ, MacGillivray C, Gannon J, Lee RT (2007) Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation 116:1683–1692

    Article  CAS  PubMed  Google Scholar 

  18. Ziegler M, Elvers M, Baumer Y, Leder C, Ochmann C, Schonberger T, Jurgens T, Geisler T, Schlosshauer B, Lunov O et al (2012) The bispecific SDF1-GPVI fusion protein preserves myocardial function after transient ischemia in mice. Circulation 125:685–696

    Article  CAS  PubMed  Google Scholar 

  19. Chung ES, Miller L, Patel AN, Anderson RD, Mendelsohn FO, Traverse J, Silver KH, Shin J, Ewald G, Farr MJ et al (2015) Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J 36:2228–2238

    Article  PubMed  PubMed Central  Google Scholar 

  20. Theiss HD, Brenner C, Engelmann MG, Zaruba MM, Huber B, Henschel V, Mansmann U, Wintersperger B, Reiser M, Steinbeck G et al (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-Trial)--rationale, design and first interim analysis. Int J Cardiol 145:282–284

    Article  PubMed  Google Scholar 

  21. Ghadge S, Muhlstedt S, Ozcelik C, Bader M (2011) SDF-1alpha as a therapeutic stem cell homing factor in myocardial infarction. Pharmacol Ther 129:97–108

    Article  CAS  PubMed  Google Scholar 

  22. Doring Y, Pawig L, Weber C, Noels H (2014) The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 5:212

    PubMed  PubMed Central  Google Scholar 

  23. Proulx C, El-Helou V, Gosselin H, Clement R, Gillis MA, Villeneuve L, Calderone A (2007) Antagonism of stromal cell-derived factor-1alpha reduces infarct size and improves ventricular function after myocardial infarction. Pflugers Arch 455:241–250

    Article  CAS  PubMed  Google Scholar 

  24. Jujo K, Ii M, Sekiguchi H, Klyachko E, Misener S, Tanaka T, Tongers J, Roncalli J, Renault MA, Thorne T et al (2013) CXC-chemokine receptor 4 antagonist AMD3100 promotes cardiac functional recovery after ischemia/reperfusion injury via endothelial nitric oxide synthase-dependent mechanism. Circulation 127:63–73

    Article  CAS  PubMed  Google Scholar 

  25. Hsu WT, Jui HY, Huang YH, Su MY, Wu YW, Tseng WY, Hsu MC, Chiang BL, Wu KK, Lee CM (2015) CXCR4 antagonist TG-0054 mobilizes mesenchymal stem cells, attenuates inflammation, and preserves cardiac systolic function in a porcine model of myocardial infarction. Cell Transplant 24:1313–28

    Article  PubMed  Google Scholar 

  26. Agarwal U, Ghalayini W, Dong F, Weber K, Zou YR, Rabbany SY, Rafii S, Penn MS (2010) Role of cardiac myocyte CXCR4 expression in development and left ventricular remodeling after acute myocardial infarction. Circ Res 107:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Escot S, Blavet C, Hartle S, Duband JL, Fournier-Thibault C (2013) Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ Res 113:505–516

    Article  CAS  PubMed  Google Scholar 

  28. Hadad I, Veithen A, Springael JY, Sotiropoulou PA, Da Mendes CA, Miot F, Naeije R, De DX, Entee KM (2013) Stroma cell-derived factor-1alpha signaling enhances calcium transients and beating frequency in rat neonatal cardiomyocytes. PLoS ONE 8:e56007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pyo RT, Sui J, Dhume A, Palomeque J, Blaxall BC, Diaz G, Tunstead J, Logothetis DE, Hajjar RJ, Schecter AD (2006) CXCR4 modulates contractility in adult cardiac myocytes. J Mol Cell Cardiol 41:834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM (2004) Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114:438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci U S A 107:20009–20014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chu PY, Zatta A, Kiriazis H, Chin-Dusting J, Du XJ, Marshall T, Kaye DM (2011) CXCR4 antagonism attenuates the cardiorenal consequences of mineralocorticoid excess. Circ Heart Fail 4:651–658

    Article  PubMed  Google Scholar 

  33. Chu PY, Walder K, Horlock D, Williams D, Nelson E, Byrne M, Jandeleit-Dahm K, Zimmet P, Kaye DM (2015) CXCR4 antagonism attenuates the development of diabetic cardiac fibrosis. PLoS ONE 10:e0133616

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chu PY, Mariani J, Finch S, McMullen JR, Sadoshima J, Marshall T, Kaye DM (2010) Bone marrow-derived cells contribute to fibrosis in the chronically failing heart. Am J Pathol 176:1735–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74:184–195

    Article  CAS  PubMed  Google Scholar 

  36. Chabanon A, Desterke C, Rodenburger E, Clay D, Guerton B, Boutin L, Bennaceur-Griscelli A, Pierre-Louis O, Uzan G, Abecassis L et al (2008) A cross-talk between stromal cell-derived factor-1 and transforming growth factor-beta controls the quiescence/cycling switch of CD34(+) progenitors through FoxO3 and mammalian target of rapamycin. Stem Cells 26:3150–3161

    Article  CAS  PubMed  Google Scholar 

  37. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109

    Article  CAS  PubMed  Google Scholar 

  38. Suratt BT, Petty JM, Young SK, Malcolm KC, Lieber JG, Nick JA, Gonzalo JA, Henson PM, Worthen GS (2004) Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104:565–571

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Chemaly E, Liang L, Kho C, Lee A, Park J, Altman P, Schecter AD, Hajjar RJ, Tarzami ST (2010) Effects of CXCR4 gene transfer on cardiac function after ischemia-reperfusion injury. Am J Pathol 176:1705–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Z, Ye P, Wang S, Wu J, Sun Y, Zhang A, Ren L, Cheng C, Huang X, Wang K et al (2015) MicroRNA-150 protects the heart from injury by inhibiting monocyte accumulation in a mouse model of acute myocardial infarction. Circ Cardiovasc Genet 8:11–20

    Article  CAS  PubMed  Google Scholar 

  41. Steppich BA, Moog P, Matissek C, Wisniowski N, Kuhle J, Joghetaei N, Neumann FJ, Schomig A, Ott I (2007) Cytokine profiles and T cell function in acute coronary syndromes. Atherosclerosis 190:443–451

    Article  CAS  PubMed  Google Scholar 

  42. Yu Q, Watson RR, Marchalonis JJ, Larson DF (2005) A role for T lymphocytes in mediating cardiac diastolic function. Am J Physiol Heart Circ Physiol 289:H643–H651

    Article  CAS  PubMed  Google Scholar 

  43. Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, Wang M, Liu Y, Guo Z, Chen J et al (2005) TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol 25:246–253

    Article  CAS  PubMed  Google Scholar 

  44. Nanki T, Lipsky PE (2000) Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol 164:5010–5014

    Article  CAS  PubMed  Google Scholar 

  45. Lim K, Hyun YM, Lambert-Emo K, Capece T, Bae S, Miller R, Topham DJ, Kim M (2015) Neutrophil trails guide influenza-specific CD8(+) T cells in the airways. Science 349:aaa4352

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liehn EA, Tuchscheerer N, Kanzler I, Drechsler M, Fraemohs L, Schuh A, Koenen RR, Zander S, Soehnlein O, Hristov M et al (2011) Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J Am Coll Cardiol 58:2415–2423

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Tanja Schalow, Ariane Giese, Sabine Grüger, Astrid Schiche, Sina Wohlfart, Martin Taube, Stefanie Schelenz, Babette Dieringer, and Petra Domaing provided excellent technical assistance. This work has been supported by the Berlin-Brandenburg School for Regenerative Therapies (BSRT) Graduate School 203 through a fellowship to SM and by the German Center for Cardiovascular Research (DZHK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bader.

Ethics declarations

Conflict of interest

None declared

Additional information

Silke Mühlstedt and Santhosh K. Ghadge contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mühlstedt, S., Ghadge, S.K., Duchene, J. et al. Cardiomyocyte-derived CXCL12 is not involved in cardiogenesis but plays a crucial role in myocardial infarction. J Mol Med 94, 1005–1014 (2016). https://doi.org/10.1007/s00109-016-1432-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1432-1

Keywords

Navigation