Skip to main content

Advertisement

Log in

Epithelial-mesenchymal plasticity in circulating tumor cells

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Epithelial-to-Mesenchymal Transition (EMT) is a complex process that supports the migratory capacity of epithelial tumor cells and is thought to play a crucial role in promoting cancer metastasis. Despite the wealth of experimental data, the exact role of EMT in cancer patients remains more controversial. Over the past 10 years, sensitive technologies that allow the detection and molecular characterization of circulating tumor cells (CTCs) in the peripheral blood of tumor patients have been developed. These analyses help to shed new light into the importance of EMT for human tumor cell dissemination. CTCs with mesenchymal features can be attributed in some clinical studies (in particularly on breast cancer) to higher disease stages, presence of metastases, and even to therapy response and worse outcome. However, the published studies addressing the impact of mesenchymal-like CTCs show heterogeneity with regard to assay specificity, size of cancer and control groups, and endpoint parameters. In the present review, we present the key features of the biology of CTCs in relation to epithelial-to-mesenchy-mal plasticity, describe the current technologies for enrichment and detection of CTCs with high epithelial-mesenchymal plasticity, and discuss the clinical studies that have assessed the relevance of mesenchymal CTCs in carcinoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EpCAM:

Epithelial cell adhesion molecule

EMT:

Epithelial-to-mesenchymal transition

E:

Epithelial

M:

Mesenchymal

Ab:

Antibodies

References

  1. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) Emt: 2016. Cell 166:21–45

    Article  CAS  PubMed  Google Scholar 

  2. Kang Y, Pantel K (2013) Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23:573–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bednarz-Knoll N, Alix-Panabieres C, Pantel K (2012) Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev 31:673–687

    Article  CAS  PubMed  Google Scholar 

  4. Aparicio LA, Blanco M, Castosa R, Concha A, Valladares M, Calvo L, Figueroa A (2015) Clinical implications of epithelial cell plasticity in cancer progression. Cancer Lett 366:1–10

    Article  CAS  PubMed  Google Scholar 

  5. Diepenbruck M, Christofori G (2016) Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol 43:7–13

    Article  CAS  PubMed  Google Scholar 

  6. Hyun KA, Koo GB, Han H, Sohn J, Choi W, Kim SI, Jung HI, Kim YS (2016) Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget 7:24677–24687

    PubMed  PubMed Central  Google Scholar 

  7. Pantel K, Alix-Panabieres C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16:398–406

    Article  PubMed  Google Scholar 

  8. Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson EW, Polette M, Gilles C (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 15:261–273

    Article  PubMed  Google Scholar 

  9. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G, Heukeshoven J, Pantel K (2005) Changes in cytoskeletal protein composition indicative of an epithelial–mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11:8006–8014

    Article  CAS  PubMed  Google Scholar 

  10. Spizzo G, Fong D, Wurm M, Ensinger C, Obrist P, Hofer C, Mazzoleni G, Gastl G, Went P (2011) EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis. J Clin Pathol 64:415–420

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cimino A, Halushka M, Illei P, Wu X, Sukumar S, Argani P (2010) Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat 123:701–708

    Article  CAS  PubMed  Google Scholar 

  12. Rack B, Schindlbeck C, Juckstock J, Andergassen U, Hepp P, Zwingers T, Friedl TW, Lorenz R, Tesch H, Fasching PA et al (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 106

  13. Janni WJ, Rack B, Terstappen LW, Pierga JY, Taran FA, Fehm T, Hall C, de Groot MR, Bidard FC, Friedl TW et al (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 22:2583–2593

    Article  CAS  PubMed  Google Scholar 

  14. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bauerle T, Wallwiener M et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31:539–544

    Article  CAS  PubMed  Google Scholar 

  15. Cayrefourcq L, Mazard T, Joosse S, Solassol J, Ramos J, Assenat E, Schumacher U, Costes V, Maudelonde T, Pantel K et al (2015) Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res 75:892–901

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5:180ra148

    Article  Google Scholar 

  17. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  18. Deneve E, Riethdorf S, Ramos J, Nocca D, Coffy A, Daures JP, Maudelonde T, Fabre JM, Pantel K, Alix-Panabieres C (2013) Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem 59:1384–1392

    Article  CAS  PubMed  Google Scholar 

  19. Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, Rossille D, Maudelonde T, Fest T, Alix-Panabieres C (2015) Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 9:1773–1782

    Article  CAS  PubMed  Google Scholar 

  20. Nicolazzo C, Raimondi C, Mancini M, Caponnetto S, Gradilone A, Gandini O, Mastromartino M, Del Bene G, Prete A, Longo F et al (2016) Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci Rep 6:31726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anantharaman A, Friedlander T, Lu D, Krupa R, Premasekharan G, Hough J, Edwards M, Paz R, Lindquist K, Graf R et al (2016) Programmed death-ligand 1 (PD-L1) characterization of circulating tumor cells (CTCs) in muscle invasive and metastatic bladder cancer patients. BMC Cancer 16:744

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy—inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18:6580–6587

    Article  CAS  PubMed  Google Scholar 

  23. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Sharkey CC, Huang D, King MR (2015) Nanobiotechnology for the therapeutic targeting of cancer cells in blood. Cell Mol Bioeng 8:137–150

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bourcy M, Suarez-Carmona M, Lambert J, Francart ME, Schroeder H, Delierneux C, Skrypek N, Thompson EW, Jerusalem G, Berx G et al (2016) Tissue factor induced by epithelial–mesenchymal transition triggers a Procoagulant state that drives metastasis of circulating tumor cells. Cancer Res 76(14):4270-82. doi:10.1158/0008-5472.CAN-15-2263

  27. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    Article  CAS  PubMed  Google Scholar 

  28. Lorente D, Olmos D, Mateo J, Bianchini D, Seed G, Fleisher M, Danila DC, Flohr P, Crespo M, Figueiredo I et al (2016) Decline in circulating tumor cell count and treatment outcome in advanced prostate cancer. Eur Urol (16)30187-7. doi:10.1016/j.eururo.2016.05.023

  29. Bidard FC, Peeters DJ, Fehm T, Nole F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J et al (2014) Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 15:406–414

    Article  PubMed  Google Scholar 

  30. Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G et al (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N Engl J Med 342:525–533

    Article  CAS  PubMed  Google Scholar 

  31. Pantel K, Dickmanns A, Zippelius A, Klein C, Shi J, Hoechtlen-Vollmar W, Schlimok G, Weckermann D, Oberneder R, Fanning E (1995) Establishment of micrometastatic carcinoma cell lines: a novel source of tumor cell vaccines. J Natl Cancer Inst 87:1162–1168

    Article  CAS  PubMed  Google Scholar 

  32. Putz E, Witter K, Offner S, Stosiek P, Zippelius A, Johnson J, Zahn R, Riethmuller G, Pantel K (1999) Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res 59:241–248

    CAS  PubMed  Google Scholar 

  33. Bartkowiak K, Kwiatkowski M, Buck F, Gorges TM, Nilse L, Assmann V, Andreas A, Muller V, Wikman H, Riethdorf S et al (2015) Disseminated tumor cells persist in the bone marrow of breast cancer patients through sustained activation of the unfolded protein response. Cancer Res 75:5367–5377

    Article  CAS  PubMed  Google Scholar 

  34. Bartkowiak K, Effenberger KE, Harder S, Andreas A, Buck F, Peter-Katalinic J, Pantel K, Brandt BH (2010) Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J Proteome Res 9:3158–3168

    Article  CAS  PubMed  Google Scholar 

  35. Grabinski N, Bartkowiak K, Grupp K, Brandt B, Pantel K, Jucker M (2011) Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells. Cell Signal 23:1952–1960

    Article  CAS  PubMed  Google Scholar 

  36. Barriere G, Fici P, Gallerani G, Fabbri F, Zoli W, Rigaud M (2014) Circulating tumor cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med 2:109

    PubMed  PubMed Central  Google Scholar 

  37. Bednarz N, Eltze E, Semjonow A, Rink M, Andreas A, Mulder L, Hannemann J, Fisch M, Pantel K, Weier HU et al (2010) BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood. Clin Cancer Res 16:3340–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Babayan A, Alawi M, Gormley M, Muller V, Wikman H, McMullin RP, Smirnov DA, Li W, Geffken M, Pantel K et al. (2016) Comparative study of whole genome amplification and next generation sequencing performance of single cancer cells. Oncotarget. doi. 10.18632/oncotarget.10701

  40. Rothwell DG, Smith N, Morris D, Leong HS, Li Y, Hollebecque A, Ayub M, Carter L, Antonello J, Franklin L et al (2016) Genetic profiling of tumours using both circulating free DNA and circulating tumour cells isolated from the same preserved whole blood sample. Mol Oncol 10:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu DI, Liu L, Ren C, Kong D, Zhang P, Jin X, Wang T, Zhang G (2016) Epithelial–mesenchymal interconversions and the regulatory function of the ZEB family during the development and progression of ovarian cancer. Oncol Lett 11:1463–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kasimir-Bauer S, Hoffmann O, Wallwiener D, Kimmig R, Fehm T (2012) Expression of stem cell and epithelial–mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res 14:R15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yokobori T, Iinuma H, Shimamura T, Imoto S, Sugimachi K, Ishii H, Iwatsuki M, Ota D, Ohkuma M, Iwaya T et al (2013) Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial–mesenchymal transition and is associated with colorectal cancer prognosis. Cancer Res 73:2059–2069

    Article  CAS  PubMed  Google Scholar 

  44. Ueo H, Sugimachi K, Gorges TM, Bartkowiak K, Yokobori T, Muller V, Shinden Y, Ueda M, Ueo H, Mori M et al (2015) Circulating tumour cell-derived plastin3 is a novel marker for predicting long-term prognosis in patients with breast cancer. Br J Cancer 112:1519–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Satelli A, Brownlee Z, Mitra A, Meng QH, Li S (2015) Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem 61:259–266

    Article  CAS  PubMed  Google Scholar 

  46. Hou JM, Krebs M, Ward T, Sloane R, Priest L, Hughes A, Clack G, Ranson M, Blackhall F, Dive C (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178:989–996

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC et al (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16:5011–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu S, Liu S, Liu Z, Huang J, Pu X, Li J, Yang D, Deng H, Yang N, Xu J (2015) Classification of circulating tumor cells by epithelial–mesenchymal transition markers. PLoS One 10:e0123976

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dolfus C, Piton N, Toure E, Sabourin JC (2015) Circulating tumor cell isolation: the assets of filtration methods with polycarbonate track-etched filters. Chin J Cancer Res 27:479–487

    CAS  PubMed  PubMed Central  Google Scholar 

  50. de Wit S, van Dalum G, Lenferink AT, Tibbe AG, Hiltermann TJ, Groen HJ, van Rijn CJ, Terstappen LW (2015) The detection of EpCAM(+) and EpCAM(−) circulating tumor cells. Sci Rep 5:12270

    Article  PubMed  PubMed Central  Google Scholar 

  51. Denis JA, Patroni A, Guillerm E, Pepin D, Benali-Furet N, Wechsler J, Manceau G, Bernard M, Coulet F, Larsen AK et al (2016) Droplet digital PCR of circulating tumor cells from colorectal cancer patients can predict KRAS mutations before surgery. Mol Oncol 10:1221–1231

    Article  CAS  PubMed  Google Scholar 

  52. Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A, Muller V, Loges S, Neves RP, Stoecklein NH et al (2016) A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer 138:2894–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chudziak J, Burt DJ, Mohan S, Rothwell DG, Mesquita B, Antonello J, Dalby S, Ayub M, Priest L, Carter L et al (2016) Clinical evaluation of a novel microfluidic device for epitope-independent enrichment of circulating tumour cells in patients with small cell lung cancer. Analyst 141:669–678

    Article  CAS  PubMed  Google Scholar 

  54. Che J, Yu V, Dhar M, Renier C, Matsumoto M, Heirich K, Garon EB, Goldman J, Rao J, Sledge GW et al (2016) Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic vortex technology. Oncotarget 7:12748–12760

    PubMed  PubMed Central  Google Scholar 

  55. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial–mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mego M, Gao H, Lee BN, Cohen EN, Tin S, Giordano A, Wu Q, Liu P, Nieto Y, Champlin RE et al (2012) Prognostic value of EMT-circulating tumor cells in metastatic breast cancer patients undergoing high-dose chemotherapy with autologous hematopoietic stem cell transplantation. J Cancer 3:369–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bulfoni M, Gerratana L, Del Ben F, Marzinotto S, Sorrentino M, Turetta M, Scoles G, Toffoletto B, Isola M, Beltrami CA et al (2016) In patients with metastatic breast cancer the identification of circulating tumor cells in epithelial-to-mesenchymal transition is associated with a poor prognosis. Breast Cancer Res 18:30

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gradilone A, Raimondi C, Nicolazzo C, Petracca A, Gandini O, Vincenzi B, Naso G, Agliano AM, Cortesi E, Gazzaniga P (2011) Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. J Cell Mol Med 15:1066–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S (2011) Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 13:R59

    Article  PubMed  PubMed Central  Google Scholar 

  60. Papadaki MA, Kallergi G, Zafeiriou Z, Manouras L, Theodoropoulos PA, Mavroudis D, Georgoulias V, Agelaki S (2014) Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC Cancer 14:651

    Article  PubMed  PubMed Central  Google Scholar 

  61. Barriere G, Riouallon A, Renaudie J, Tartary M, Rigaud M (2012) Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer 12:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E et al (2011) Epithelial–mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130(2):449-55. doi:10.1007/s10549-011-1373-x

  63. Markiewicz A, Ksiazkiewicz M, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Szade J, Zaczek AJ (2014) Mesenchymal phenotype of CTC-enriched blood fraction and lymph node metastasis formation potential. PLoS One 9:e93901

    Article  PubMed  PubMed Central  Google Scholar 

  64. Serrano MJ, Ortega FG, Alvarez-Cubero MJ, Nadal R, Sanchez-Rovira P, Salido M, Rodriguez M, Garcia-Puche JL, Delgado-Rodriguez M, Sole F et al (2014) EMT and EGFR in CTCs cytokeratin negative non-metastatic breast cancer. Oncotarget 5:7486–7497

    Article  PubMed  PubMed Central  Google Scholar 

  65. Barriere G, Riouallon A, Renaudie J, Tartary M, Rigaud M (2012) Mesenchymal characterization: alternative to simple CTC detection in two clinical trials. Anticancer Res 32:3363–3369

    PubMed  Google Scholar 

  66. Ning Y, Zhang W, Hanna DL, Yang D, Okazaki S, Berger MD, Miyamoto Y, Suenaga M, Schirripa M, El-Khoueiry A et al (2016) Clinical relevance of EMT and stem-like gene expression in circulating tumor cells of metastatic colorectal cancer patients. Pharmacogenomics J. doi:10.1038/tpj.2016.62

  67. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman MJ, Kopetz S, Ellis LM, Meng QH, Li S (2015) Epithelial–mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res 21:899–906

    Article  CAS  PubMed  Google Scholar 

  68. Li YM, Xu SC, Li J, Han KQ, Pi HF, Zheng L, Zuo GH, Huang XB, Li HY, Zhao HZ et al. (2013) Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell Death Dis 4: e831

  69. Liu YK, Hu BS, Li ZL, He X, Li Y, Lu LG (2016) An improved strategy to detect the epithelial–mesenchymal transition process in circulating tumor cells in hepatocellular carcinoma patients. Hepatol Int 10:640–646

    Article  PubMed  Google Scholar 

  70. Li TT, Liu H, Li FP, Hu YF, Mou TY, Lin T, Yu J, Zheng L, Li GX (2015) Evaluation of epithelial–mesenchymal transitioned circulating tumor cells in patients with resectable gastric cancer: relevance to therapy response. World J Gastroenterol 21:13259–13267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lecharpentier A, Vielh P, Perez-Moreno P, Planchard D, Soria JC, Farace F (2011) Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer 105:1338–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Theodoropoulos PA, Polioudaki H, Agelaki S, Kallergi G, Saridaki Z, Mavroudis D, Georgoulias V (2010) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288:99–106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive support from CANCER-ID, an Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115749, resources of which are composed of financial contribution from the European Union’s Seventh Framework Program (FP7/2007–2013) and EFPIA companies’ in-kind contribution. This work was further supported by the FEDER plus the Region Languedoc-Roussillon (GEPETOS project) and the National Institute of Cancer (INCA; to C. Alix-Panabières), and the European Research Council Advanced Investigator grant no. 269081 DISSECT (to K. Pantel).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine Alix-Panabières or Klaus Pantel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alix-Panabières, C., Mader, S. & Pantel, K. Epithelial-mesenchymal plasticity in circulating tumor cells. J Mol Med 95, 133–142 (2017). https://doi.org/10.1007/s00109-016-1500-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1500-6

Keywords

Navigation