Skip to main content
Log in

Navigation von Tumoren und Metastasen im Bereich der thorakolumbalen Wirbelsäule

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Das Ziel dieser prospektiven klinischen Studie war es, die Einsatzmöglichkeiten der computerunterstützten Visualisierung während der dorsalen Dekompression und Pedikelinstrumentierung bei Tumorbefall der Wirbelsäule zu evaluieren. Es wurde ein optoelektronisches Navigationssystem (SurgiGATE®) genutzt. 12 Patienten mit Tumoren im Bereich der Wirbelsäule oder akuter Instabilität bzw. Myelonschädigung wurden unter Verwendung des Navigationssystems posterior dekomprimiert und stabilisiert. Bei 5 Patienten waren dabei zwei oder mehr Wirbelkörper involviert. Bei 7 Patienten lag der Tumor monosegmental vor. 10 Tumoren fanden sich thorakal, davon 2 im Bereich der lumbalen Wirbelsäule. Bei allen Patienten lag ein fortgeschrittenes metastasierendes Tumorleiden vor.

Bei den 12 computerassistiert operierten Patienten konnten mit Ausnahme von 6 Pedikelschrauben alle navigiert eingesetzt werden. Diese 6 Pedikelschrauben mussten herkömmlich eingebracht werden, weil eine intraoperative Registrierung des Wirbelkörpers nicht möglich war. Das Ziel der computerunterstützten Dekompression und Hemilaminektomie wurde bei allen Patienten erreicht. 86% der Pedikelschrauben wurden zentral platziert.

Die ersten Ergebnisse zeigen, dass die computerunterstützte Navigation auch im Bereich der Tumorchirurgie der dorsalen Wirbelsäule eine sichere Technik darstellt. Sie kann die intraoperative Präzision erhöhen und gleichzeitig wertvolle Hinweise bei der Dekompression geben. Generell ist diese Technik nach wie vor für den erfahrenen Chirurgen eine Hilfe. Technische und fallbezogene unvorhergesehene Ereignisse machen es jedoch erforderlich, dass der Chirurg zu jeder Zeit auf klassische Weise die Operation fortsetzen kann.

Abstract

In this clinical feasibility study, CT-based verification of the efficacy of navigated decompression and pedicle screw placement in patients who had tumor-related posterior surgery was demonstrated. Eighty-six percent of the pedicle screws were positioned centrally in the bone without perforation; in all patients accurate decompression was seen. The accuracy of transpedicle screw implantation postoperatively was investigated with CT. In contrast to other published studies, no postoperative neurologic deterioration was seen in the patients as a result of using computer-aided surgical procedures. At the same time we were able to achieve complete decompression of the neural structures for radiologic and neurologic findings. Because of inaccurate registration, it was not possible to use computer-aided implantation surgery for 15% of the pedicles and, therefore, a conventional fluoroscopic approach was used.

Our initial results indicate that computer-aided frameless navigation of tumor surgery of the spine is a safe technique which improves surgical performance during posterior decompression and transpedicle stabilization. In addition, CAS surgery improved the intraoperative information about the tumor and the current surgical intervention during decompression. Nevertheless the technique should be used only by experienced surgeons who can, if required, continue the operation using conventional techniques. Furthermore, the surgeon should have a complete theoretical understanding of the navigation system to minimize possible misinterpretation of computer guidance information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a–c
Abb. 3
Abb. 4a, b

Literatur

  1. Amiot LP, Bellefleur C, Labelle H (1997) In vitro evaluation of computer-assisted pedicle screw system. Ann Chir 51: 854–860

    Google Scholar 

  2. Amiot LP, Lang K, Putzier M, Zippel H, Labelle H (2000) Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine 25: 606–614

    Google Scholar 

  3. Bauer HC (1997) Posterior decompression and stabilization for spinal metastases: Analysis of sixty-seven consecutive patients. J Bone Joint Surg 79A: 514–522

    Google Scholar 

  4. Carl AL, Khanuja HS, Sachs BL et al. (1997) In vitro simulation: Early results of stereotaxy for pedicle screw placement. Spine 22: 1160–1164

    Google Scholar 

  5. Castro WH, Halm H, Jerosch J et al. (1996) Accuracy of pedicle screw placement in lumbar vertebrae. Spine 21: 1320–1324

    Google Scholar 

  6. Esses SI, Sachs BL, Dreyzin V (1993) Complications associated with the technique of pedicle screw fixation: A selected survey of ABS members. Spine 18: 2231–2238

    Google Scholar 

  7. Frankel HL, Hancock DO, Hyslop G et al. (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Paraplegia 7: 179–192

    Google Scholar 

  8. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine 15: 11–14

    Google Scholar 

  9. Girardi FP, Cammisa FP, Sandhu HS, Alvarez L (1999) The placement of lumbar pedicle screws using computerised stereotactic guidance. J Bone Joint Surg 81B: 825–829

    Google Scholar 

  10. Jerosch J, Malms J, Castro WH, Wagner R, Wiesner L (1992) Lagekontrolle von Pedikelschrauben nach instrumentierter dorsaler Fusion der Lendenwirbelsäule. Z Orthop 130: 479–483

    Google Scholar 

  11. Kamimura M, Ebara S, Itoh H et al. (1999) Accurate pedicle screw insertion under the control of a computer-assisted image guiding system: Laboratory test and clinical study. J Orthop Sci 4: 197–206

    Google Scholar 

  12. Laine T, Schlenzka D, Makitalo K et al. (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery: A prospective clinical trial of 30 patients. Spine 22: 1254–1258

    Google Scholar 

  13. Merloz P, Tonetti J, Pittet L et al. (1998) Pedicle screw placement using image guided techniques. Clin Orthop 354: 39–48

    Google Scholar 

  14. Merloz P, Tonetti J, Pittet L et al. (1998) Computer-assisted spine surgery. Comput Aided Surg 3: 297–305

    Google Scholar 

  15. Nolte LP, Visarius H, Arm E et al. (1995) Computer-aided fixation of spinal implants. J Image Guid Surg 1: 88–93

    Google Scholar 

  16. Nolte LP, Zamorano LJ, Jiang Z et al. (1995) Image-guided insertion of transpedicular screws: A laboratory set-up. Spine 20: 497–500

    Google Scholar 

  17. Roessler K, Ungersboeck K, Dietrich W et al. (1997) Frameless stereotactic guided neurosurgery: Clinical experience with an infrared based pointer device navigation system. Acta Neurochir 139: 551–559

    Google Scholar 

  18. Roy-Camille R, Roy-Camille M, Demeulenaere C (1970) Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med 78: 1447–1448

    Google Scholar 

  19. Saillant G (1995) Complications de la visee pediculaire, echecs et complications de la chirurgie du rachis. Sauramps, Montpellier

  20. Schwarzenbach O, Berlemann U, Jost B et al. (1997) Accuracy of computer-assisted pedicle screw placement: An in vivo computed tomography analysis. Spine 22: 452–458

    Google Scholar 

  21. Sim E (1993) Location of transpedicular screws fixation of the lower thoracic and lumbar spine. Acta Orthop Scand 64: 28–32

    Google Scholar 

  22. Vaccaro AR, Rizzolo SJ, Balderston RA et al. (1995) Placement of pedicle screws in the thoracic spine. Part II: An anatomical and radiographic assessment. J Bone Joint Surg 77A: 1200–1206

    Google Scholar 

  23. Vinas FC, Holdener H, Zamorano L et al. (1998) Use of interactive-intraoperative guidance during vertebrectomy and anterior spinal fusion with instrumental fixation: Technical note. Minim Invasive Neurosurg 41: 166–171

    Google Scholar 

  24. Visarius H, Gong J, Scheer C, Haralamb S, Nolte LP (1997) Man-machine interfaces in computer assisted surgery. Comput Aided Surg 2: 102–107

    Google Scholar 

  25. Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S (1988) Spinal pedicle fixation: Reliability and validity of roentgenogram- based assessment and surgical factors on successful screw placement. Spine 13: 1012–1018

    Google Scholar 

  26. West JL, Bradford DS, Ogilvie JW (1991) Results of spinal arthrodesis with pedicle screw-plate fixation. J Bone Joint Surg 73A: 1179–1184

    Google Scholar 

  27. Wise JJ, Fischgrund JS, Herkowitz HN, Montgomery D, Kurz LT (1999) Complication, survival rates, and risk factors of surgery for metastatic disease of the spine. Spine 24: 1943–1951

    Google Scholar 

  28. Zindrick MR, Wiltse LL, Doornik A et al. (1987) Analysis of the morphometric characteristics of the thoracic and lumbar pedicles. Spine 12: 160–166

    Google Scholar 

  29. Zippel H, Putzier M, Lang K (2000) Computerassistierte Wirbelsäulenchirurgie. In: Reichel H, Zwipp H, Hein W (Hrsg) Wirbelsäulenchirurgie. Standortbestimmung und Trends. Steinkopff, Darmstadt, S 174–201

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gebhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebhard, F., Kinzl, L., Hartwig, E. et al. Navigation von Tumoren und Metastasen im Bereich der thorakolumbalen Wirbelsäule. Unfallchirurg 106, 949–955 (2003). https://doi.org/10.1007/s00113-003-0684-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-003-0684-8

Schlüsselwörter

Keywords

Navigation