Skip to main content
Erschienen in: Der Radiologe 1/2004

01.01.2004 | Hochfeld-MR

Klinische MRT bei 3 Tesla: Aktueller Stand

verfasst von: Dr. K. T. Baudendistel, J. T. Heverhagen, M. V. Knopp

Erschienen in: Die Radiologie | Ausgabe 1/2004

Einloggen, um Zugang zu erhalten

Zusammenfassung

Während die klinische MRT zumeist bei Feldstärken von bis zu 1,5 Tesla (T) durchgeführt wird, sind seit jüngster Zeit zugelassene klinische 3-T-Ganzkörper-MR-Systeme verfügbar. Deren Verbreitung wächst schneller als erwartet. Während sich die Aufstellungsbedürfnisse und Handhabung dieser Systeme nicht mehr wesentlich von denen mit kleineren Feldstärken unterscheidet, bestehen jedoch Unterschiede im praktischen Einsatz. Für die Bildgebung bei 3 T lässt sich das erhöhte Signal-zu-Rausch-Verhältnis (SNR) sowohl zu verbesserter räumlicher Auflösung oder schnellerer Bildaufnahme nutzen. Nachteilig führt dies zu einer Erhöhung der Empfindlichkeit auf Feldinhomogenitäten und veränderten Relaxationszeiten, die zu Kontraständerungen führen. Für die MR-Spektroskopie liegt der Vorteil in der Erhöhung des SNR und der spektralen Auflösung. Der Anstieg der pro Hochfrequenzanregung deponierten Energie macht darüber hinaus die Anwendung spezieller Strategien zur Reduktion der spezifischen Absorptionsrate (SAR) notwendig. Dieser Artikel gibt einen Überblick über den aktuellen Stand der MTR bei 3 T.
Literatur
1.
Zurück zum Zitat Bernstein MA, Huston J, III, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3.0 T: technical considerations and initial experience. Magn Reson Med 46:955–962CrossRefPubMed Bernstein MA, Huston J, III, Lin C, Gibbs GF, Felmlee JP (2001) High-resolution intracranial and cervical MRA at 3.0 T: technical considerations and initial experience. Magn Reson Med 46:955–962CrossRefPubMed
2.
Zurück zum Zitat Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402CrossRefPubMed Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402CrossRefPubMed
3.
Zurück zum Zitat Hunsche S, Moseley ME, Stoeter P, Hedehus M (2001) Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 221:550–556PubMed Hunsche S, Moseley ME, Stoeter P, Hedehus M (2001) Diffusion-tensor MR imaging at 1.5 and 3.0 T: initial observations. Radiology 221:550–556PubMed
4.
Zurück zum Zitat Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM (1999) Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 23:821–831CrossRefPubMed Kangarlu A, Baertlein BA, Lee R, Ibrahim T, Yang L, Abduljalil AM, Robitaille PM (1999) Dielectric resonance phenomena in ultra high field MRI. J Comput Assist Tomogr 23:821–831CrossRefPubMed
5.
Zurück zum Zitat Koenig SH, Brown RD, III, Adams D, Emerson D, Harrison CG (1984) Magnetic field dependence of 1/T1 of protons in tissue. Invest Radiol 19:76–81PubMed Koenig SH, Brown RD, III, Adams D, Emerson D, Harrison CG (1984) Magnetic field dependence of 1/T1 of protons in tissue. Invest Radiol 19:76–81PubMed
6.
Zurück zum Zitat Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448CrossRefPubMed Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448CrossRefPubMed
7.
Zurück zum Zitat Mlynarik V, Gruber S, Moser E (2001) Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331CrossRefPubMed Mlynarik V, Gruber S, Moser E (2001) Proton T (1) and T (2) relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14:325–331CrossRefPubMed
8.
Zurück zum Zitat Ethofer T, Mader I, Seeger U, Ludolph A, Grodd W, Klose U (2003) Comparison of metabolite T1 relaxation times in different brain regions at 1.5 and 3 Tesla. Proc Intl Soc Mag Reson Med 11:434 Ethofer T, Mader I, Seeger U, Ludolph A, Grodd W, Klose U (2003) Comparison of metabolite T1 relaxation times in different brain regions at 1.5 and 3 Tesla. Proc Intl Soc Mag Reson Med 11:434
9.
Zurück zum Zitat Lin C, Bernstein MA, Huston J, Fein SB (2001) In-vivo and in-vitro measurements of T1 relaxation at 3.0T. Proc Intl Soc Mag Reson Med 9:1391 Lin C, Bernstein MA, Huston J, Fein SB (2001) In-vivo and in-vitro measurements of T1 relaxation at 3.0T. Proc Intl Soc Mag Reson Med 9:1391
10.
Zurück zum Zitat Brix G, Schulz O, Griebel J (2002) [Restriction of high-frequency exposure of patients in MR examinations]. Radiologe 42:51–59 Brix G, Schulz O, Griebel J (2002) [Restriction of high-frequency exposure of patients in MR examinations]. Radiologe 42:51–59
11.
Zurück zum Zitat Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833PubMed Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833PubMed
12.
Zurück zum Zitat Conolly S, Nishimura D, Mackowsky A (1988) Variable rate selective excitation. J Mag Res 78:440–458 Conolly S, Nishimura D, Mackowsky A (1988) Variable rate selective excitation. J Mag Res 78:440–458
13.
Zurück zum Zitat Busse RF, Zur Y, Body XL (2003) Lower SAR yields improved coverage with VERSE and modulated angle refocusing trains. Proc Intl Soc Mag Reson Med 11:206 Busse RF, Zur Y, Body XL (2003) Lower SAR yields improved coverage with VERSE and modulated angle refocusing trains. Proc Intl Soc Mag Reson Med 11:206
14.
Zurück zum Zitat Zur Y, Hugg J, Montag A, Outmezguine D, Busse R (2003) Clinical 3T SAR reduction using VERSE pulses. Proc Intl Soc Mag Reson Med 11:958 Zur Y, Hugg J, Montag A, Outmezguine D, Busse R (2003) Clinical 3T SAR reduction using VERSE pulses. Proc Intl Soc Mag Reson Med 11:958
16.
Zurück zum Zitat Sodickson DK, Griswold MA, Jakob PM (1999) SMASH imaging. Magn Reson Imaging Clin N Am 7:237-viiiPubMed Sodickson DK, Griswold MA, Jakob PM (1999) SMASH imaging. Magn Reson Imaging Clin N Am 7:237-viiiPubMed
17.
Zurück zum Zitat Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMed
18.
Zurück zum Zitat Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29:355–373 Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29:355–373
19.
Zurück zum Zitat Shellock FG (2003) Reference manual for magnetic resonance safety. Saunders, Philadelphia Shellock FG (2003) Reference manual for magnetic resonance safety. Saunders, Philadelphia
20.
Zurück zum Zitat Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872PubMed Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872PubMed
21.
Zurück zum Zitat Reichenbach JR, Barth M, Haacke EM, Klarhofer M, Kaiser WA, Moser E (2000) High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 24:949–957CrossRefPubMed Reichenbach JR, Barth M, Haacke EM, Klarhofer M, Kaiser WA, Moser E (2000) High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 24:949–957CrossRefPubMed
22.
Zurück zum Zitat Barth M, Nobauer-Huhmann IM, Reichenbach JR, Mlynarik V, Schoggl A, Matula C, Trattnig S (2003) High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 38:409–414CrossRefPubMed Barth M, Nobauer-Huhmann IM, Reichenbach JR, Mlynarik V, Schoggl A, Matula C, Trattnig S (2003) High-resolution three-dimensional contrast-enhanced blood oxygenation level-dependent magnetic resonance venography of brain tumors at 3 Tesla: first clinical experience and comparison with 1.5 Tesla. Invest Radiol 38:409–414CrossRefPubMed
23.
Zurück zum Zitat Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302PubMed Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38:296–302PubMed
24.
Zurück zum Zitat Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604CrossRefPubMed Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604CrossRefPubMed
25.
Zurück zum Zitat Al Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187CrossRefPubMed Al Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187CrossRefPubMed
26.
Zurück zum Zitat Campeau NG, Huston J, III, Bernstein MA, Lin C, Gibbs GF (2001) Magnetic resonance angiography at 3.0 Tesla: initial clinical experience. Top Magn Reson Imaging 12:183–204CrossRefPubMed Campeau NG, Huston J, III, Bernstein MA, Lin C, Gibbs GF (2001) Magnetic resonance angiography at 3.0 Tesla: initial clinical experience. Top Magn Reson Imaging 12:183–204CrossRefPubMed
27.
Zurück zum Zitat Gonen O, Gruber S, Li BS, Mlynarik V, Moser E (2001) Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol 22:1727–1731PubMed Gonen O, Gruber S, Li BS, Mlynarik V, Moser E (2001) Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol 22:1727–1731PubMed
28.
Zurück zum Zitat Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45:765–769CrossRefPubMed Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45:765–769CrossRefPubMed
29.
Zurück zum Zitat Hardy CJ, Bottomley PA, Roemer PB, Redington RW (1988) Rapid 31P spectroscopy on a 4-T whole-body system. Magn Reson Med 8:104–109PubMed Hardy CJ, Bottomley PA, Roemer PB, Redington RW (1988) Rapid 31P spectroscopy on a 4-T whole-body system. Magn Reson Med 8:104–109PubMed
30.
Zurück zum Zitat Bomsdorf H, Helzel T, Kunz D, Roschmann P, Tschendel O, Wieland J (1988) Spectroscopy and imaging with a 4 tesla whole-body MR system. NMR Biomed 1:151–158PubMed Bomsdorf H, Helzel T, Kunz D, Roschmann P, Tschendel O, Wieland J (1988) Spectroscopy and imaging with a 4 tesla whole-body MR system. NMR Biomed 1:151–158PubMed
31.
Zurück zum Zitat Noeske R, Seifert F, Rhein KH, Rinneberg H (2000) Human cardiac imaging at 3 T using phased array coils. Magn Reson Med 44:978–982CrossRefPubMed Noeske R, Seifert F, Rhein KH, Rinneberg H (2000) Human cardiac imaging at 3 T using phased array coils. Magn Reson Med 44:978–982CrossRefPubMed
32.
Zurück zum Zitat Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436–442CrossRefPubMed Hinton DP, Wald LL, Pitts J, Schmitt F (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436–442CrossRefPubMed
33.
Zurück zum Zitat Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429CrossRefPubMed Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429CrossRefPubMed
34.
Zurück zum Zitat Ikonen S, Karkkainen P, Kivisaari L, Salo JO, Taari K, Vehmas T, Tervahartiala P, Rannikko S (2001) Endorectal magnetic resonance imaging of prostatic cancer: comparison between fat-suppressed T2-weighted fast spin echo and three-dimensional dual-echo, steady-state sequences. Eur Radiol 11:236–241PubMed Ikonen S, Karkkainen P, Kivisaari L, Salo JO, Taari K, Vehmas T, Tervahartiala P, Rannikko S (2001) Endorectal magnetic resonance imaging of prostatic cancer: comparison between fat-suppressed T2-weighted fast spin echo and three-dimensional dual-echo, steady-state sequences. Eur Radiol 11:236–241PubMed
35.
Zurück zum Zitat Sosna J, Rofsky NM, Gaston SM, DeWolf WC, Lenkinski RE (2003) Determinations of prostate volume at 3-Tesla using an external phased array coil: comparison to pathologic specimens. Acad Radiol 10:846–853CrossRefPubMed Sosna J, Rofsky NM, Gaston SM, DeWolf WC, Lenkinski RE (2003) Determinations of prostate volume at 3-Tesla using an external phased array coil: comparison to pathologic specimens. Acad Radiol 10:846–853CrossRefPubMed
36.
Zurück zum Zitat Kim HW, Buckley DL, Peterson DM, Duensing GR, Caserta J, Fitzsimmons J, Blackband SJ (2003) In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results. Invest Radiol 38:443–451CrossRefPubMed Kim HW, Buckley DL, Peterson DM, Duensing GR, Caserta J, Fitzsimmons J, Blackband SJ (2003) In vivo prostate magnetic resonance imaging and magnetic resonance spectroscopy at 3 Tesla using a transceive pelvic phased array coil: preliminary results. Invest Radiol 38:443–451CrossRefPubMed
37.
Zurück zum Zitat Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V, Barth M, Schoggl A, Heimberger K, Matula C, Fog A, Kaider A, Trattnig S (2002) Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla. Invest Radiol 37:114–119CrossRefPubMed Nobauer-Huhmann IM, Ba-Ssalamah A, Mlynarik V, Barth M, Schoggl A, Heimberger K, Matula C, Fog A, Kaider A, Trattnig S (2002) Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla. Invest Radiol 37:114–119CrossRefPubMed
38.
Zurück zum Zitat Lu H, Clingman C, Golay X, van Zijl P (2003) What is the relaxation time of blood (T1) at 3.0 Tesla? Proc Intl Soc Mag Reson Med 11:669 Lu H, Clingman C, Golay X, van Zijl P (2003) What is the relaxation time of blood (T1) at 3.0 Tesla? Proc Intl Soc Mag Reson Med 11:669
39.
Zurück zum Zitat Wansapura JP, Holland SK, Dunn RS, Ball WS jr (1999) NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 9:531–538CrossRefPubMed Wansapura JP, Holland SK, Dunn RS, Ball WS jr (1999) NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 9:531–538CrossRefPubMed
Metadaten
Titel
Klinische MRT bei 3 Tesla: Aktueller Stand
verfasst von
Dr. K. T. Baudendistel
J. T. Heverhagen
M. V. Knopp
Publikationsdatum
01.01.2004
Verlag
Springer-Verlag
Erschienen in
Die Radiologie / Ausgabe 1/2004
Print ISSN: 2731-7048
Elektronische ISSN: 2731-7056
DOI
https://doi.org/10.1007/s00117-003-0995-3

Weitere Artikel der Ausgabe 1/2004

Der Radiologe 1/2004 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.