Skip to main content
Erschienen in: Diabetologia 6/2003

01.06.2003 | Review

Diabetic dyslipidaemia: from basic research to clinical practice*

verfasst von: Dr. M.-R. Taskinen

Erschienen in: Diabetologia | Ausgabe 6/2003

Einloggen, um Zugang zu erhalten

Abstract

The recognition that the increase of plasma triglyceride rich lipoproteins (TRLs) is associated with multiple alterations of other lipoproteins species that are potentially atherogenic has expanded the picture of diabetic dyslipidaemia. The discovery of heterogeneity within major lipoprotein classes VLDL, LDL and HDL opened new avenues to reveal the specific pertubations of diabetic dyslipidaemia. The increase of large VLDL 1 particles in Type 2 diabetes initiates a sequence of events that generates atherogenic remnants, small dense LDL and small dense HDL particles. Together these components comprise the atherogenic lipid triad. Notably the malignant nature of diabetic dyslipidaemia is not completely shown by the lipid measures used in clinical practice. The key question is what are the mechanisms behind the increase of VLDL 1 particles in diabetic dyslipidaemia? Despite the advances of recent years, our understanding of VLDL assembly and secretion is still surprisingly incomplete. To date it is still unclear how the liver is able to regulate the amount of triglycerides incorporated into VLDL particles to produce either VLDL 1 or VLDL 2 particles. The current evidence suggests that the machinery driving VLDL assembly in the liver includes (i) low insulin signalling via PI-3 kinase pathway that enhances lipid accumulation into "nascent " VLDL particles (ii) up-regulation of SREBP-1C that stimulates de novo lipogenesis and (iii) excess availability of "polar molecules" in hepatocytes that stabilizes apo B 100. Recent data suggest that all these steps could be fundamentally altered in Type 2 diabetes explaining the overproduction of VLDL apo B as well as the ability of insulin to suppress VLDL 1 apo B production in Type 2 diabetes.
Recent discoveries have established the transcription factors including PPARs, SREBP-1 and LXRs as the key regulators of lipid assembly in the liver. These observations suggest these factors as a new target to tailor more efficient drugs to treat diabetic dyslipidaemia.
Literatur
1.
Zurück zum Zitat Turner R C, Millns H, Neil HAW et al. (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS:23). BMJ 316:823–828PubMed Turner R C, Millns H, Neil HAW et al. (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective diabetes study (UKPDS:23). BMJ 316:823–828PubMed
2.
Zurück zum Zitat Isomaa B, Lahti K, Almgren P et al. (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689PubMed Isomaa B, Lahti K, Almgren P et al. (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689PubMed
3.
Zurück zum Zitat Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefPubMed Zimmet P, Alberti KGMM, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefPubMed
4.
Zurück zum Zitat Haffner S M, Lehto S, Rönnemaa T et al. (1998) Mortality from coronary heart diseases in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234PubMed Haffner S M, Lehto S, Rönnemaa T et al. (1998) Mortality from coronary heart diseases in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234PubMed
5.
Zurück zum Zitat Malmberg K, Yusuf S, Gerstein H C et al. (2000) Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wawe myocardial infarction. Circulation 102:1014–1019PubMed Malmberg K, Yusuf S, Gerstein H C et al. (2000) Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wawe myocardial infarction. Circulation 102:1014–1019PubMed
6.
Zurück zum Zitat Executive summary of the third report of the National Cholesterol Education Program (NCEP) (2001) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497PubMed Executive summary of the third report of the National Cholesterol Education Program (NCEP) (2001) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285:2486–2497PubMed
7.
Zurück zum Zitat Syvänne M, Taskinen M-R (1997) Lipids and lipoproteins as coronary risk factors in non-insulin dependent diabetes mellitus. Lancet 350 [Suppl 1]:20–23 Syvänne M, Taskinen M-R (1997) Lipids and lipoproteins as coronary risk factors in non-insulin dependent diabetes mellitus. Lancet 350 [Suppl 1]:20–23
8.
Zurück zum Zitat Taskinen M-R (2001) Pathogenesis of dyslipidemia in type 2 diabetes. Exp Clin Endocrinol Diabetes 109:173–181CrossRef Taskinen M-R (2001) Pathogenesis of dyslipidemia in type 2 diabetes. Exp Clin Endocrinol Diabetes 109:173–181CrossRef
9.
Zurück zum Zitat Ginsberg HN (2002) New perspectives in atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 106:2137–2142CrossRefPubMed Ginsberg HN (2002) New perspectives in atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 106:2137–2142CrossRefPubMed
10.
Zurück zum Zitat Packard CJ, Shepherd J (1997) Lipoprotein heterogeneity and apolipoprotein B metabolism. Aterioscler Thromb Vasc Biol 17:3542–3556 Packard CJ, Shepherd J (1997) Lipoprotein heterogeneity and apolipoprotein B metabolism. Aterioscler Thromb Vasc Biol 17:3542–3556
11.
Zurück zum Zitat Taskinen M-R (1987) Lipoprotein lipase in diabetes. Diabet/Metab Rev 3:551–570 Taskinen M-R (1987) Lipoprotein lipase in diabetes. Diabet/Metab Rev 3:551–570
12.
Zurück zum Zitat Kasim SE, Tseng K, Jen K-LC et al. (1987) Significance of hepatic triglyceride lipase activity in the regulation of serum high density lipoproteins in type II diabetes mellitus. J Clin Endocrinol Metab 65:183–187PubMed Kasim SE, Tseng K, Jen K-LC et al. (1987) Significance of hepatic triglyceride lipase activity in the regulation of serum high density lipoproteins in type II diabetes mellitus. J Clin Endocrinol Metab 65:183–187PubMed
13.
Zurück zum Zitat Baynes C, Henderson A D, Anyaoku V et al. (1991) The role of insulin insensitivity and hepatic lipase in the dyslipidaemia of type 2 diabetes. Diabet Med 8:560–566PubMed Baynes C, Henderson A D, Anyaoku V et al. (1991) The role of insulin insensitivity and hepatic lipase in the dyslipidaemia of type 2 diabetes. Diabet Med 8:560–566PubMed
14.
Zurück zum Zitat Tan KCB, Shiu SWM, Chu BYM (1999) Roles of hepatic lipase and cholesteryl ester transfer protein determining low density lipoprotein subfraction distribution in Chinese patients with non-insulin-dependent diabetes mellitus. Atherosclerosis 145:273–278CrossRefPubMed Tan KCB, Shiu SWM, Chu BYM (1999) Roles of hepatic lipase and cholesteryl ester transfer protein determining low density lipoprotein subfraction distribution in Chinese patients with non-insulin-dependent diabetes mellitus. Atherosclerosis 145:273–278CrossRefPubMed
15.
Zurück zum Zitat Tan CE, Forster L, Caslake MJ et al. (1995) Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women. Arterioscler Thromb Vasc Biol 15:1839–1848PubMed Tan CE, Forster L, Caslake MJ et al. (1995) Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women. Arterioscler Thromb Vasc Biol 15:1839–1848PubMed
16.
Zurück zum Zitat McEneny J, O'Kane MJ, Moles KW et al. (2000) Very low density lipoprotein subfractions in type 2 diabetes mellitus: alterations in composition and susceptibility to oxidation. Diabetologia 43:485–493CrossRefPubMed McEneny J, O'Kane MJ, Moles KW et al. (2000) Very low density lipoprotein subfractions in type 2 diabetes mellitus: alterations in composition and susceptibility to oxidation. Diabetologia 43:485–493CrossRefPubMed
17.
Zurück zum Zitat Taskinen M-R, Packard CJ, Shepherd J (1990) Effect of insulin therapy on metabolic fate of apolipoprotein B-containing lipoproteins in NIDDM. Diabetes 39:1017–1027PubMed Taskinen M-R, Packard CJ, Shepherd J (1990) Effect of insulin therapy on metabolic fate of apolipoprotein B-containing lipoproteins in NIDDM. Diabetes 39:1017–1027PubMed
18.
Zurück zum Zitat Guérin M, Le Goff W, Lassel TS et al. (2001) Proatherogenic role of elevated CE transfer from HDL to VLDL 1 and dense LDL in type 2 diabetes. Arterioscler Thromb Vasc Biol 21:282–288PubMed Guérin M, Le Goff W, Lassel TS et al. (2001) Proatherogenic role of elevated CE transfer from HDL to VLDL 1 and dense LDL in type 2 diabetes. Arterioscler Thromb Vasc Biol 21:282–288PubMed
19.
Zurück zum Zitat Leinonen ES, Leinonen PJ, Salonen JT et al. (2002) Reduced IGFBP-1 is associated with thickening of the carotid wall in type 2 diabetes. Diabetes Care 25:1807–1812PubMed Leinonen ES, Leinonen PJ, Salonen JT et al. (2002) Reduced IGFBP-1 is associated with thickening of the carotid wall in type 2 diabetes. Diabetes Care 25:1807–1812PubMed
20.
Zurück zum Zitat Shachter NS (2001) Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol 12:297–304CrossRefPubMed Shachter NS (2001) Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol 12:297–304CrossRefPubMed
21.
Zurück zum Zitat Wang CS, McConathy WJ, Kloer HU et al. (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75:384–390PubMed Wang CS, McConathy WJ, Kloer HU et al. (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75:384–390PubMed
22.
Zurück zum Zitat Ebra T, Ramakrishnan R, Steiner G et al. (1997) Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein. Eur J Clin Invest 99:2672–2681 Ebra T, Ramakrishnan R, Steiner G et al. (1997) Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein. Eur J Clin Invest 99:2672–2681
23.
Zurück zum Zitat Sehayek E, Eisenberg S (1991) Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem 266:18259–18267PubMed Sehayek E, Eisenberg S (1991) Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem 266:18259–18267PubMed
24.
Zurück zum Zitat Briones ER, Mao SJ, Palumbo PJ et al. (1984) Analysis of plasma lipids and apolipoproteins in insulin-dependent and non-insulin-dependent diabetics. Metabolism 33:42–49PubMed Briones ER, Mao SJ, Palumbo PJ et al. (1984) Analysis of plasma lipids and apolipoproteins in insulin-dependent and non-insulin-dependent diabetics. Metabolism 33:42–49PubMed
25.
Zurück zum Zitat Campos H, Perlov D, Khoo C et al. (2001) Distinct patterns of lipoproteins with apo B defined by presence of apo E or apoC-III in hypercholesterolemia and hypertriglyceridemia. J Lipid Res 42:1239–1249PubMed Campos H, Perlov D, Khoo C et al. (2001) Distinct patterns of lipoproteins with apo B defined by presence of apo E or apoC-III in hypercholesterolemia and hypertriglyceridemia. J Lipid Res 42:1239–1249PubMed
26.
Zurück zum Zitat Tomiyasu K, Walsh BW, Ikewaki K et al. (2001) Differential metabolism of human VLDL according to content of ApoE and ApoC-III. Arterioscler Thromb Vasc Biol 21:1494–1500PubMed Tomiyasu K, Walsh BW, Ikewaki K et al. (2001) Differential metabolism of human VLDL according to content of ApoE and ApoC-III. Arterioscler Thromb Vasc Biol 21:1494–1500PubMed
27.
Zurück zum Zitat Sacks FM, Alaupovic P, Moye LA et al. (2000) VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation 102:1886–1892PubMed Sacks FM, Alaupovic P, Moye LA et al. (2000) VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation 102:1886–1892PubMed
28.
Zurück zum Zitat Luc G, Fievet C, Arveiler D et al. (1997) Apolipoproteins C-III and E in apoB- and non-apoB-containing lipoproteins in two populations at contrasting risk for myocardial infarction: the ECTIM study. Etude Cas Temoins sur Infarctus du Myocarde. J Lipid Res 37:508–517 Luc G, Fievet C, Arveiler D et al. (1997) Apolipoproteins C-III and E in apoB- and non-apoB-containing lipoproteins in two populations at contrasting risk for myocardial infarction: the ECTIM study. Etude Cas Temoins sur Infarctus du Myocarde. J Lipid Res 37:508–517
29.
Zurück zum Zitat Gervaise N, Garrigue M A, Lasfargues G et al. (2000) Triglycerides, apo C3 and Lp B:C3 and cardiovascular risk in type 2 diabetes. Diabetologia 43:703–708CrossRefPubMed Gervaise N, Garrigue M A, Lasfargues G et al. (2000) Triglycerides, apo C3 and Lp B:C3 and cardiovascular risk in type 2 diabetes. Diabetologia 43:703–708CrossRefPubMed
30.
Zurück zum Zitat Gabor J, Spain M, Kalant N (1980) Composition of serum very-low-density and high-density lipoproteins in diabetes. Clin Chem 26:1261–1265PubMed Gabor J, Spain M, Kalant N (1980) Composition of serum very-low-density and high-density lipoproteins in diabetes. Clin Chem 26:1261–1265PubMed
31.
Zurück zum Zitat Stalenhoef AFH, Demacker PNM, Lutterman JA et al. (1982) Apolipoprotein C in type 2 (non-insulin-dependent) diabetic patients with hypertriglyceridaemia. Diabetologia 22:489–491PubMed Stalenhoef AFH, Demacker PNM, Lutterman JA et al. (1982) Apolipoprotein C in type 2 (non-insulin-dependent) diabetic patients with hypertriglyceridaemia. Diabetologia 22:489–491PubMed
32.
Zurück zum Zitat Ishibashi S, Yamada N, Shimano H et al. (1989) Composition of very-low-density lipoproteins in non-insulin-dependent diabetes mellitus. Clin Chem 35:808–812PubMed Ishibashi S, Yamada N, Shimano H et al. (1989) Composition of very-low-density lipoproteins in non-insulin-dependent diabetes mellitus. Clin Chem 35:808–812PubMed
33.
Zurück zum Zitat Mahley RW, Ji S-Z (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein. Eur J Lipid Res 40:1–16 Mahley RW, Ji S-Z (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein. Eur J Lipid Res 40:1–16
34.
Zurück zum Zitat Syvänne M, Rosseneu M, Labeur C et al. (1994) Enrichment with apolipoprotein E characterizes postprandial TG-rich lipoproteins in patients with non-insulin-dependent diabetes mellitus and coronary artery disease: preliminary report. Atherosclerosis 105:25–34PubMed Syvänne M, Rosseneu M, Labeur C et al. (1994) Enrichment with apolipoprotein E characterizes postprandial TG-rich lipoproteins in patients with non-insulin-dependent diabetes mellitus and coronary artery disease: preliminary report. Atherosclerosis 105:25–34PubMed
35.
Zurück zum Zitat Tannock LR, Olin KL, Barret HR et al. (2002) Triglyceride-rich lipoproteins from subjects with type 2 diabetes do not demonstrate increased binding to biglycan, a vascular proteoglycan. J Clin Endocrinol Metab 87:35–40PubMed Tannock LR, Olin KL, Barret HR et al. (2002) Triglyceride-rich lipoproteins from subjects with type 2 diabetes do not demonstrate increased binding to biglycan, a vascular proteoglycan. J Clin Endocrinol Metab 87:35–40PubMed
36.
Zurück zum Zitat Sparks JD, Sparks CE (1994) Insulin regulation of triglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta 1215:9–32CrossRefPubMed Sparks JD, Sparks CE (1994) Insulin regulation of triglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta 1215:9–32CrossRefPubMed
37.
Zurück zum Zitat Zammit V A (1996) Role of insulin in hepatic fatty acid partitioning: emerging concepts. Biochem J 314:1–14PubMed Zammit V A (1996) Role of insulin in hepatic fatty acid partitioning: emerging concepts. Biochem J 314:1–14PubMed
38.
Zurück zum Zitat Chirieac D V, Chirieac L R, Corsetti J P et al. (2000) Glucose-stimulated insulin secretion suppresses hepatic triglyceride-rich lipoprotein and apoB production. Am J Endocrinol Metab 279: E1003–E1011 Chirieac D V, Chirieac L R, Corsetti J P et al. (2000) Glucose-stimulated insulin secretion suppresses hepatic triglyceride-rich lipoprotein and apoB production. Am J Endocrinol Metab 279: E1003–E1011
39.
Zurück zum Zitat Lin MCM, Gordon D, Wetterau JR (1995) Microsomal triglyceride transfer protein (MTP) regulation in HEPG2 cells: insulin negatively regulates MTP gene expression. J Lipid Res 36:1073–1081PubMed Lin MCM, Gordon D, Wetterau JR (1995) Microsomal triglyceride transfer protein (MTP) regulation in HEPG2 cells: insulin negatively regulates MTP gene expression. J Lipid Res 36:1073–1081PubMed
40.
Zurück zum Zitat Kuriyama H, Yamashita S, Shimomura I et al. (1998) Enhanced expression of hepatic acyl-coenzyme A synthetase and microsomal triglyceride transfer protein messenger RNAs in the obese and hypertriglyceridemic rat with visceral fat accumulation. Hepatology 27:557–562PubMed Kuriyama H, Yamashita S, Shimomura I et al. (1998) Enhanced expression of hepatic acyl-coenzyme A synthetase and microsomal triglyceride transfer protein messenger RNAs in the obese and hypertriglyceridemic rat with visceral fat accumulation. Hepatology 27:557–562PubMed
41.
Zurück zum Zitat Bartels ED, Lauritsen M, Nielsen LB (2002) Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes 51:1233–1239PubMed Bartels ED, Lauritsen M, Nielsen LB (2002) Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes 51:1233–1239PubMed
42.
Zurück zum Zitat Taghibiglou C, Carpentier A, Van Iderstine SC et al. (2000) Mechanism of hepatic very low density lipoprotein overproduction in insulin resistance. J Biol Chem 275:8416–8425CrossRefPubMed Taghibiglou C, Carpentier A, Van Iderstine SC et al. (2000) Mechanism of hepatic very low density lipoprotein overproduction in insulin resistance. J Biol Chem 275:8416–8425CrossRefPubMed
43.
Zurück zum Zitat Carpentier A, Taghibiglou C, Leung N et al. (2002) Ameliorated hepatic insulin resistance is associated with normalization of microsomal triglyceride transfer protein expression and reduction in very low density lipoprotein assembly and secretion in the fructose-fed hamster. J Biol Chem 277:28795–28802CrossRefPubMed Carpentier A, Taghibiglou C, Leung N et al. (2002) Ameliorated hepatic insulin resistance is associated with normalization of microsomal triglyceride transfer protein expression and reduction in very low density lipoprotein assembly and secretion in the fructose-fed hamster. J Biol Chem 277:28795–28802CrossRefPubMed
44.
Zurück zum Zitat Marsh JB, Welty FK, Lichtenstein AH et al. (2002) Apolipoprotein B metabolism in humans: studies with stable isotope-labeled amino acid precursors. Atherosclerosis 162:227–244CrossRefPubMed Marsh JB, Welty FK, Lichtenstein AH et al. (2002) Apolipoprotein B metabolism in humans: studies with stable isotope-labeled amino acid precursors. Atherosclerosis 162:227–244CrossRefPubMed
45.
Zurück zum Zitat Packard CJ, Demant T, Stewart JP et al. (2000) Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J Lipid Res 41:305–317PubMed Packard CJ, Demant T, Stewart JP et al. (2000) Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J Lipid Res 41:305–317PubMed
46.
Zurück zum Zitat Tan CE, Forster L, Caslake MJ et al. (1995) Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women. Arterioscler Thromb Vasc Biol 15:1839–1848PubMed Tan CE, Forster L, Caslake MJ et al. (1995) Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women. Arterioscler Thromb Vasc Biol 15:1839–1848PubMed
47.
Zurück zum Zitat Malmström R, Packard CJ, Watson TDG et al. (1997) Metabolic basis of hypotriglyceridemic effects of insulin in normal men. Arterioscler Thromb Vasc Biol 17:1454–1464PubMed Malmström R, Packard CJ, Watson TDG et al. (1997) Metabolic basis of hypotriglyceridemic effects of insulin in normal men. Arterioscler Thromb Vasc Biol 17:1454–1464PubMed
48.
Zurück zum Zitat Lewis GF, Uffelman KD, Szeto LW et al. (1993) Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL ApoB production in normal weight and obese individuals. Diabetes 42:833–842PubMed Lewis GF, Uffelman KD, Szeto LW et al. (1993) Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL ApoB production in normal weight and obese individuals. Diabetes 42:833–842PubMed
49.
Zurück zum Zitat Bioletto S, Golay A, Munger R et al. (2000) Acute hyperinsulinemia and very-low-density lipoprotein subfractions in obese subjects. Am J Clin Nutr 71:443–449PubMed Bioletto S, Golay A, Munger R et al. (2000) Acute hyperinsulinemia and very-low-density lipoprotein subfractions in obese subjects. Am J Clin Nutr 71:443–449PubMed
50.
Zurück zum Zitat Malmström R, Packard CJ, Caslake M et al. (1997) Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologia 40:454–462CrossRefPubMed Malmström R, Packard CJ, Caslake M et al. (1997) Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologia 40:454–462CrossRefPubMed
51.
Zurück zum Zitat Gibbons GF, Islam K, Pease RJ (2000) Mobilisation of triglycerol stores. Biochim Biophys Acta 1483:37–57CrossRefPubMed Gibbons GF, Islam K, Pease RJ (2000) Mobilisation of triglycerol stores. Biochim Biophys Acta 1483:37–57CrossRefPubMed
52.
Zurück zum Zitat Olofsson S-O, Stillemark-Bilton P, Asp L (2000) Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc Med 10:338–345CrossRefPubMed Olofsson S-O, Stillemark-Bilton P, Asp L (2000) Intracellular assembly of VLDL: two major steps in separate cell compartments. Trends Cardiovasc Med 10:338–345CrossRefPubMed
53.
Zurück zum Zitat Lewis GF, Carpentier A, Adeli K et al. (2002) Disordered fat storage and mobolization in the pathogenesis of insulin resistance ond type 2 diabetes. Endocr Rev 23:201–229PubMed Lewis GF, Carpentier A, Adeli K et al. (2002) Disordered fat storage and mobolization in the pathogenesis of insulin resistance ond type 2 diabetes. Endocr Rev 23:201–229PubMed
54.
Zurück zum Zitat Phung TL, Roncone A, De Mesy Jensen KL et al. (1997) Phosphoinositide 3-kinase activity is necessary for insulin-dependent inhibition of apolipoprotein B secretion by rat hepatocytes and localizes to the endoplasmic reticulum. Journal of Biological Chemistry 272:30693–30702CrossRefPubMed Phung TL, Roncone A, De Mesy Jensen KL et al. (1997) Phosphoinositide 3-kinase activity is necessary for insulin-dependent inhibition of apolipoprotein B secretion by rat hepatocytes and localizes to the endoplasmic reticulum. Journal of Biological Chemistry 272:30693–30702CrossRefPubMed
55.
Zurück zum Zitat Brown AM, Gibbons GF (2001) Insulin inhibits the maturation phase of VLDL assembly via a phosphoinositide 3-kinase-mediated event. Arterioscler Thromb Vasc Biol 21:1656–1661PubMed Brown AM, Gibbons GF (2001) Insulin inhibits the maturation phase of VLDL assembly via a phosphoinositide 3-kinase-mediated event. Arterioscler Thromb Vasc Biol 21:1656–1661PubMed
56.
Zurück zum Zitat Shimomura I, Matsuda M, Hammer RE et al. (2000) Decreased IRS-2 and increased SREBP-1 lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 6:77–86PubMed Shimomura I, Matsuda M, Hammer RE et al. (2000) Decreased IRS-2 and increased SREBP-1 lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 6:77–86PubMed
57.
Zurück zum Zitat Foufelle F, Ferré P (2002) New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol ragulatory element binding protein-1c. Biochem J 366:377–391CrossRefPubMed Foufelle F, Ferré P (2002) New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol ragulatory element binding protein-1c. Biochem J 366:377–391CrossRefPubMed
58.
Zurück zum Zitat Matsumoto M, Ogawa W, Teshigawara K et al. (2002) Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 51:1672–1680PubMed Matsumoto M, Ogawa W, Teshigawara K et al. (2002) Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 51:1672–1680PubMed
59.
Zurück zum Zitat Yahagi N, Shimano H, Hasty AH et al. (2002) Absence of sterol regulatory element-binding Protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice. J Biol Chem 277:19353–19357CrossRefPubMed Yahagi N, Shimano H, Hasty AH et al. (2002) Absence of sterol regulatory element-binding Protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lepob/Lepob mice. J Biol Chem 277:19353–19357CrossRefPubMed
60.
Zurück zum Zitat Malmström R, Packard CJ, Caslake M et al. (1998) Effects of insulin and acipimox on VLDL 1 and VLDL 2 apolipoprotein B production in normal subjects. Diabetes 47:779–787PubMed Malmström R, Packard CJ, Caslake M et al. (1998) Effects of insulin and acipimox on VLDL 1 and VLDL 2 apolipoprotein B production in normal subjects. Diabetes 47:779–787PubMed
61.
Zurück zum Zitat Malmström R, Packard CJ, Caslake M et al. (1999) Effect of heparin-stimulated plasma lipolytic activity on VLDL apo B subclass metabolism in normal subjects. Atherosclerosis 146:381–390CrossRefPubMed Malmström R, Packard CJ, Caslake M et al. (1999) Effect of heparin-stimulated plasma lipolytic activity on VLDL apo B subclass metabolism in normal subjects. Atherosclerosis 146:381–390CrossRefPubMed
62.
Zurück zum Zitat Carpentier A, Patterson BW, Leung N et al. (2002) Sensitivity to acute insulin-mediated suppression of plasma free fatty acids is not a determinant of fasting VLDL triglyceride secretion in healthy humans. Diabetes 51:1867–1875PubMed Carpentier A, Patterson BW, Leung N et al. (2002) Sensitivity to acute insulin-mediated suppression of plasma free fatty acids is not a determinant of fasting VLDL triglyceride secretion in healthy humans. Diabetes 51:1867–1875PubMed
63.
Zurück zum Zitat Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458PubMed Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458PubMed
64.
Zurück zum Zitat Kissebah AH, Alfarasi S, Evans DJ et al. (1982) Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in non-insulin-dependent diabetes mellitus. Diabetes 31:217–225PubMed Kissebah AH, Alfarasi S, Evans DJ et al. (1982) Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in non-insulin-dependent diabetes mellitus. Diabetes 31:217–225PubMed
65.
Zurück zum Zitat Taskinen MR, Beltz WF, Harper I et al. (1986) Effects of NIDDM on very-low-density lipoprotein triglyceride and apolipoprotein B metabolism. Study before and after sulfonylurea therapy. Diabetes 113:522–526 Taskinen MR, Beltz WF, Harper I et al. (1986) Effects of NIDDM on very-low-density lipoprotein triglyceride and apolipoprotein B metabolism. Study before and after sulfonylurea therapy. Diabetes 113:522–526
66.
Zurück zum Zitat Cummings MH, Watts GF, Umpleby AM et al. (1995) Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in NIDDM. Diabetologia 38:959–967CrossRefPubMed Cummings MH, Watts GF, Umpleby AM et al. (1995) Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in NIDDM. Diabetologia 38:959–967CrossRefPubMed
67.
Zurück zum Zitat Howard BV, Abbot WGH, Egusa G, Taskinen MR (1987) Coordination of very-low-density lipoprotein triglyceride and apolipoprotein B metabolism in humans: effect of obesity and non-insulin-dependent diabetes mellitus. Am Heart J 113:522–556PubMed Howard BV, Abbot WGH, Egusa G, Taskinen MR (1987) Coordination of very-low-density lipoprotein triglyceride and apolipoprotein B metabolism in humans: effect of obesity and non-insulin-dependent diabetes mellitus. Am Heart J 113:522–556PubMed
68.
Zurück zum Zitat Duvillard L, Pont F, Florentin E et al. (2000) Metabolic abnormalities of apolipoprotein B-containing lipoproteins in non-insulin-dependent diabetes: a stable isotope kinetic study. Eur J Clin Invest 30:685–694CrossRefPubMed Duvillard L, Pont F, Florentin E et al. (2000) Metabolic abnormalities of apolipoprotein B-containing lipoproteins in non-insulin-dependent diabetes: a stable isotope kinetic study. Eur J Clin Invest 30:685–694CrossRefPubMed
69.
Zurück zum Zitat Ryysy L, Häkkinen A-M, Goto T et al. (2000) Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49:749–758PubMed Ryysy L, Häkkinen A-M, Goto T et al. (2000) Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49:749–758PubMed
70.
Zurück zum Zitat Marchesini G, Brizi M, Bianchi G et al. (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50:1844–1850PubMed Marchesini G, Brizi M, Bianchi G et al. (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50:1844–1850PubMed
71.
Zurück zum Zitat Clark JM, Diehl AM (2002) Hepatic steatosis and type 2 mellitus. Current diabetes reports 2:210–215PubMed Clark JM, Diehl AM (2002) Hepatic steatosis and type 2 mellitus. Current diabetes reports 2:210–215PubMed
72.
Zurück zum Zitat Seppälä-Lindroos A, Vehkavaara S, Häkkinen A-M et al. (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028PubMed Seppälä-Lindroos A, Vehkavaara S, Häkkinen A-M et al. (2002) Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028PubMed
73.
Zurück zum Zitat Yki-Järvinen H (2002) Ectopic fat accumulation: an important cause of insulin resistance in humans. J R Soc Med 95 [Suppl 42]: 39–45 Yki-Järvinen H (2002) Ectopic fat accumulation: an important cause of insulin resistance in humans. J R Soc Med 95 [Suppl 42]: 39–45
74.
Zurück zum Zitat De Vegt F, Dekker JM, Ruhé HG et al. (1999) Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn study. Diabetologia 42:926–931PubMed De Vegt F, Dekker JM, Ruhé HG et al. (1999) Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn study. Diabetologia 42:926–931PubMed
75.
Zurück zum Zitat The Decode Study Group (2001) Glucose tolerance and cardiovascular mortality. Arch Intern Med 161:397–404PubMed The Decode Study Group (2001) Glucose tolerance and cardiovascular mortality. Arch Intern Med 161:397–404PubMed
76.
Zurück zum Zitat Heine RJ, Balkau B, Ceriello A et al. (2003) What does post-prandial hyperglycaemia mean? Diabet Med (in press) Heine RJ, Balkau B, Ceriello A et al. (2003) What does post-prandial hyperglycaemia mean? Diabet Med (in press)
77.
Zurück zum Zitat De Man FHAF, Castro Cabezas N, van Barlingen HJJ et al. (1996) Triglyceride-rich lipoproteins in non-insulin-dependent diabetes mellitus: post-prandial metabolism and relation to premature atherosclerosis. Eur J Clin Invest 26:89–108PubMed De Man FHAF, Castro Cabezas N, van Barlingen HJJ et al. (1996) Triglyceride-rich lipoproteins in non-insulin-dependent diabetes mellitus: post-prandial metabolism and relation to premature atherosclerosis. Eur J Clin Invest 26:89–108PubMed
78.
Zurück zum Zitat Ginsberg HN, Illingworth R (2001) Postprandial dyslipidemia: an atherogenic disorder common in patients with diabetes mellitus. Am J Cardiol 88 [Suppl]:H9–H15 Ginsberg HN, Illingworth R (2001) Postprandial dyslipidemia: an atherogenic disorder common in patients with diabetes mellitus. Am J Cardiol 88 [Suppl]:H9–H15
79.
Zurück zum Zitat Syvänne M, Hilden H, Taskinen M-R (1994) Abnormal metabolism of postprandial lipoproteins in patients with non-insulin-dependent diabetes mellitus is not related to coronary artery disease. J Lipid Res 35:15–26PubMed Syvänne M, Hilden H, Taskinen M-R (1994) Abnormal metabolism of postprandial lipoproteins in patients with non-insulin-dependent diabetes mellitus is not related to coronary artery disease. J Lipid Res 35:15–26PubMed
80.
Zurück zum Zitat Heine RJ, Dekker J M (2002) Beyond postprandial hyperglycaemia: metabolic factors associated with cardiovascular disease. Diabetologia 45:461–475PubMed Heine RJ, Dekker J M (2002) Beyond postprandial hyperglycaemia: metabolic factors associated with cardiovascular disease. Diabetologia 45:461–475PubMed
81.
Zurück zum Zitat Schneeman BO, Kotite L, Todd KM et al. (1993) Relationship between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to fat containing meal in normolipidemic humans. Proc Natl Acad Sci USA 90:2069–2073PubMed Schneeman BO, Kotite L, Todd KM et al. (1993) Relationship between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to fat containing meal in normolipidemic humans. Proc Natl Acad Sci USA 90:2069–2073PubMed
82.
Zurück zum Zitat Karpe F, Bell M, Björkegren J et al. (1995) Quantification of postprandial triglyceride-rich lipoproteins in healthy men by Retinyl Ester labeling and simultaneous measurement of apolipoproteins B-48 and B-100. Arterioscler Thromb Vasc Biol. 15:199–207 Karpe F, Bell M, Björkegren J et al. (1995) Quantification of postprandial triglyceride-rich lipoproteins in healthy men by Retinyl Ester labeling and simultaneous measurement of apolipoproteins B-48 and B-100. Arterioscler Thromb Vasc Biol. 15:199–207
83.
Zurück zum Zitat Vakkilainen J, Mero N, Schweizer A et al. (2002) Effects of nateglinide and glibenclamide on postprandial lipid and glucose metabolism in type 2 diabetes. Diabetes Metab Res Rev 18:484–490CrossRefPubMed Vakkilainen J, Mero N, Schweizer A et al. (2002) Effects of nateglinide and glibenclamide on postprandial lipid and glucose metabolism in type 2 diabetes. Diabetes Metab Res Rev 18:484–490CrossRefPubMed
84.
Zurück zum Zitat Karpe F, Olivercrone T, Hamsten A et al. (1997) Chylomicron/chylomicron remnant turnover in humans: evidence for margination of chylomicrons and poor conversion of larger to smaller chylomicron remnants. J. Lipid Res 38:949–961 Karpe F, Olivercrone T, Hamsten A et al. (1997) Chylomicron/chylomicron remnant turnover in humans: evidence for margination of chylomicrons and poor conversion of larger to smaller chylomicron remnants. J. Lipid Res 38:949–961
85.
Zurück zum Zitat Goldberg IJ, Kako Y, Lutz EP (2000) Responses to eating: lipoproteins, lipolytic products and atherosclerosis. Curr Opin Lipidol 11:235–241CrossRefPubMed Goldberg IJ, Kako Y, Lutz EP (2000) Responses to eating: lipoproteins, lipolytic products and atherosclerosis. Curr Opin Lipidol 11:235–241CrossRefPubMed
86.
Zurück zum Zitat Tomkin GH, Owens D (2001) Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev 17:27–43CrossRefPubMed Tomkin GH, Owens D (2001) Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev 17:27–43CrossRefPubMed
87.
Zurück zum Zitat Panarotto D, Rémillard P, Bouffard L et al. (2002) Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur J Clin Invest 32(2):84–92CrossRef Panarotto D, Rémillard P, Bouffard L et al. (2002) Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur J Clin Invest 32(2):84–92CrossRef
88.
Zurück zum Zitat Mero N, Suurinkeroinen L, Syvänne M et al. (1999) Delayed clearance of postprandial large TG-rich particles in normolipidemic carriers of LPL Asn291Ser gene variant; relationship to insulin sensitivity. J Lipid Res 40:1663–1670PubMed Mero N, Suurinkeroinen L, Syvänne M et al. (1999) Delayed clearance of postprandial large TG-rich particles in normolipidemic carriers of LPL Asn291Ser gene variant; relationship to insulin sensitivity. J Lipid Res 40:1663–1670PubMed
89.
Zurück zum Zitat Talmud PJ (2001) Genetic determinants of plasma triglycerides: impact of rare and common mutations. Curr Atheroscler Rep 3:191–199PubMed Talmud PJ (2001) Genetic determinants of plasma triglycerides: impact of rare and common mutations. Curr Atheroscler Rep 3:191–199PubMed
90.
Zurück zum Zitat Ebra T, Conde K, Kako Y et al. (2000) Delayed catabolism of apo B48 lipoproteins due to decreased heparin sulphate proteoglycan production in diabetic mice. J Clin Invest 105:1807–1818PubMed Ebra T, Conde K, Kako Y et al. (2000) Delayed catabolism of apo B48 lipoproteins due to decreased heparin sulphate proteoglycan production in diabetic mice. J Clin Invest 105:1807–1818PubMed
91.
Zurück zum Zitat Haidari M, Leung N, Mahbub F et al. (2002) Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. J Biol Chem 277:31646–31655CrossRefPubMed Haidari M, Leung N, Mahbub F et al. (2002) Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. J Biol Chem 277:31646–31655CrossRefPubMed
92.
Zurück zum Zitat Fard A, Tuck CH, Donis JA et al. (2000) Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 20:2039–2044 Fard A, Tuck CH, Donis JA et al. (2000) Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 20:2039–2044
93.
Zurück zum Zitat Evans M, Anderson RA, Graham J et al. (2000) Ciprofibrate therapy improves endothelial function and reduces postprandial lipemia and oxidative stress in type 2 diabetes mellitus. Circulation 101:1773–1779PubMed Evans M, Anderson RA, Graham J et al. (2000) Ciprofibrate therapy improves endothelial function and reduces postprandial lipemia and oxidative stress in type 2 diabetes mellitus. Circulation 101:1773–1779PubMed
94.
Zurück zum Zitat Rongen GA, Tack CJ (2001) Triglycerides and endothelial function in type 2 diabetes. Eur J Clin Invest 31:560–562CrossRefPubMed Rongen GA, Tack CJ (2001) Triglycerides and endothelial function in type 2 diabetes. Eur J Clin Invest 31:560–562CrossRefPubMed
95.
Zurück zum Zitat Ceriello A, Taboga C, Tonutti L et al. (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation. Circulation 106:1211–1218CrossRefPubMed Ceriello A, Taboga C, Tonutti L et al. (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation. Circulation 106:1211–1218CrossRefPubMed
96.
Zurück zum Zitat Flood C, Gustafsson M, Richardson PE et al. (2002) Identification of the proteoglycan binding site in apolipoprotein B48. J Biol Chem 277(35): 32228–32233CrossRefPubMed Flood C, Gustafsson M, Richardson PE et al. (2002) Identification of the proteoglycan binding site in apolipoprotein B48. J Biol Chem 277(35): 32228–32233CrossRefPubMed
97.
Zurück zum Zitat Skålen K, Gustafsson M, Rydberg EK et al. (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754CrossRefPubMed Skålen K, Gustafsson M, Rydberg EK et al. (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754CrossRefPubMed
98.
Zurück zum Zitat Doi H, Kugiyama K, Oka H et al. (2000) Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism. Circulation 102:670–676PubMed Doi H, Kugiyama K, Oka H et al. (2000) Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism. Circulation 102:670–676PubMed
99.
Zurück zum Zitat Anderson RA, Jones CJH, Goodfellow J (2001) Hypothesis: is the fatty meal a trigger for acute coronary syndromes. Atherosclerosis 159:9–15CrossRefPubMed Anderson RA, Jones CJH, Goodfellow J (2001) Hypothesis: is the fatty meal a trigger for acute coronary syndromes. Atherosclerosis 159:9–15CrossRefPubMed
100.
Zurück zum Zitat Austin MA, Breslow JL, Hennekens CH et al. (1988) Low-density lipoprotein subclass patterns and risk of myocardial infraction. JAMA 260:1917–1921PubMed Austin MA, Breslow JL, Hennekens CH et al. (1988) Low-density lipoprotein subclass patterns and risk of myocardial infraction. JAMA 260:1917–1921PubMed
101.
Zurück zum Zitat Hurt-Camejo E, Camejo G, Sartipy P (2000) Phospholipase A2 and small, dense low-density lipoprotein. Curr Opin Lipidol 11:465–471CrossRefPubMed Hurt-Camejo E, Camejo G, Sartipy P (2000) Phospholipase A2 and small, dense low-density lipoprotein. Curr Opin Lipidol 11:465–471CrossRefPubMed
102.
Zurück zum Zitat Otvos JD, Jayarajah EJ, Cromwell WC (2002) Measurements issues related to lipoprotein heterogeneity. Am J Cardiol 90 [Suppl]:I22–I29 Otvos JD, Jayarajah EJ, Cromwell WC (2002) Measurements issues related to lipoprotein heterogeneity. Am J Cardiol 90 [Suppl]:I22–I29
103.
Zurück zum Zitat Boren J, Lee I, Zhu W et al. (1998) Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective Apo-B100. J Clin Invest 101:1084–1093PubMed Boren J, Lee I, Zhu W et al. (1998) Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective Apo-B100. J Clin Invest 101:1084–1093PubMed
104.
Zurück zum Zitat Sniderman AD, Scantlebury T, Cianflone K (2001) Hypertriglyceridemic HyperapoB: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann Intern Med 135:447–459PubMed Sniderman AD, Scantlebury T, Cianflone K (2001) Hypertriglyceridemic HyperapoB: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus. Ann Intern Med 135:447–459PubMed
105.
Zurück zum Zitat Tilly-Kiesi M, Syvänne M, Kuusi T et al. (1992) Abnormalities of low density lipoproteins in normolipidemic type 2 diabetic and nondiabetic patients with coronary artery disease. J Lipid Res 33:333–342PubMed Tilly-Kiesi M, Syvänne M, Kuusi T et al. (1992) Abnormalities of low density lipoproteins in normolipidemic type 2 diabetic and nondiabetic patients with coronary artery disease. J Lipid Res 33:333–342PubMed
106.
Zurück zum Zitat Stewart MW, Laker MF, Dyer RG et al. (1993) Lipoprotein compositional abnormalities and insulin resistance in type 2 diabetic patients with mild hyperlipidemia. Arterioscl Thromb Vasc Biol 13:1046–1052 Stewart MW, Laker MF, Dyer RG et al. (1993) Lipoprotein compositional abnormalities and insulin resistance in type 2 diabetic patients with mild hyperlipidemia. Arterioscl Thromb Vasc Biol 13:1046–1052
107.
Zurück zum Zitat Lahdenperä S, Syvänne M, Kahri J et al. (1996) Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 39:453–461CrossRefPubMed Lahdenperä S, Syvänne M, Kahri J et al. (1996) Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 39:453–461CrossRefPubMed
108.
Zurück zum Zitat Gray RS, Robbins DC, Wang Wenyu et al. (1997) Relation of LDL size to the insulin resistance syndrome and coronary heart disease in american indians. Arterioscler Thromb Vasc Biol 17:2713–2720PubMed Gray RS, Robbins DC, Wang Wenyu et al. (1997) Relation of LDL size to the insulin resistance syndrome and coronary heart disease in american indians. Arterioscler Thromb Vasc Biol 17:2713–2720PubMed
109.
Zurück zum Zitat Feingold KR, Grunfield C, Pang M et al. (1992) LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler Thromb 12:1496–1502PubMed Feingold KR, Grunfield C, Pang M et al. (1992) LDL subclass phenotypes and triglyceride metabolism in non-insulin-dependent diabetes. Arterioscler Thromb 12:1496–1502PubMed
110.
Zurück zum Zitat Caixàs A, Ordóñez-Llanos J, Leiva A de et al. (1997) Optimization of glycemic control by insulin therapy decreases the proportion of small dense LDL particles in diabetic patients. Diabetes 46:1207–1213PubMed Caixàs A, Ordóñez-Llanos J, Leiva A de et al. (1997) Optimization of glycemic control by insulin therapy decreases the proportion of small dense LDL particles in diabetic patients. Diabetes 46:1207–1213PubMed
111.
Zurück zum Zitat Koba S, Hirano T, Yoshino G et al. (2002) Remarkably high prevalence of small dense low-density lipoprotein in Japanese men with coronary artery disease, irrespective of the presence of diabetes. Atherosclerosis 160:249–256CrossRefPubMed Koba S, Hirano T, Yoshino G et al. (2002) Remarkably high prevalence of small dense low-density lipoprotein in Japanese men with coronary artery disease, irrespective of the presence of diabetes. Atherosclerosis 160:249–256CrossRefPubMed
112.
Zurück zum Zitat Lahdenperä S, Sane T, Vuorinen-Markkola H et al. (1994) LDL particle size in mildy hypertriglyceridemic subjects: no relation to insulin resistance or diabetes. Atherosclerosis 113:227–236CrossRef Lahdenperä S, Sane T, Vuorinen-Markkola H et al. (1994) LDL particle size in mildy hypertriglyceridemic subjects: no relation to insulin resistance or diabetes. Atherosclerosis 113:227–236CrossRef
113.
Zurück zum Zitat Tchernof A, Moorjani S, Lamarche B et al. (1996) The dense LDL phenotype: association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care 19:629–637PubMed Tchernof A, Moorjani S, Lamarche B et al. (1996) The dense LDL phenotype: association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care 19:629–637PubMed
114.
Zurück zum Zitat Ambrosch A, Dierkes J, Mühlen I et al. (1998) LDL size distribution in relation to insulin sensitivity and lipoprotein pattern in young and healthy subjects. Diabetes Care 21:2077–2084PubMed Ambrosch A, Dierkes J, Mühlen I et al. (1998) LDL size distribution in relation to insulin sensitivity and lipoprotein pattern in young and healthy subjects. Diabetes Care 21:2077–2084PubMed
115.
Zurück zum Zitat Rainwater DL (2000) Lipoprotein correlates of LDL particle size. Atherosclerosis 148:151–158CrossRefPubMed Rainwater DL (2000) Lipoprotein correlates of LDL particle size. Atherosclerosis 148:151–158CrossRefPubMed
116.
Zurück zum Zitat Austin MA, Breslow JL, Hennekens CH et al. (1988) Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921PubMed Austin MA, Breslow JL, Hennekens CH et al. (1988) Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921PubMed
117.
Zurück zum Zitat Coresh J, Kwiterovich PO, Smith HH et al. (1993) Association of plasma triglyceride concentration and LDL particle diameter, density and chemical composition with premature coronary artery disease in men and women. J Lipid Res 34:1687–1697PubMed Coresh J, Kwiterovich PO, Smith HH et al. (1993) Association of plasma triglyceride concentration and LDL particle diameter, density and chemical composition with premature coronary artery disease in men and women. J Lipid Res 34:1687–1697PubMed
118.
Zurück zum Zitat Lamarche B, Tchernof A, Dagenals GR et al. (1997) Small, dense LDL particles and the risk of ischemic heart disease. Prospective results from the Québec Cardiovascular Study. Circulation 95:69–75PubMed Lamarche B, Tchernof A, Dagenals GR et al. (1997) Small, dense LDL particles and the risk of ischemic heart disease. Prospective results from the Québec Cardiovascular Study. Circulation 95:69–75PubMed
119.
Zurück zum Zitat Gardner CD, Fortmann SP, Krauss RM (1996) Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 276:875–881CrossRefPubMed Gardner CD, Fortmann SP, Krauss RM (1996) Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 276:875–881CrossRefPubMed
120.
Zurück zum Zitat St-Pierre AC, Ruel IL, Cantin B et al. (2001) Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation 104:2295–2299PubMed St-Pierre AC, Ruel IL, Cantin B et al. (2001) Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation 104:2295–2299PubMed
121.
Zurück zum Zitat Vakkilainen J, Steiner G, Ansquer J-C et al. (2003) Relationships between LDL particle size, plasma lipoproteins and progression of coronary artery disease. The diabetes atherosclerosis intervention study (DAIS). Circulation 107:1733–1737CrossRefPubMed Vakkilainen J, Steiner G, Ansquer J-C et al. (2003) Relationships between LDL particle size, plasma lipoproteins and progression of coronary artery disease. The diabetes atherosclerosis intervention study (DAIS). Circulation 107:1733–1737CrossRefPubMed
122.
Zurück zum Zitat Hogikyan RV, Galecki AT, Pitt B et al. (1998) Specific impairment of endothelium-dependent vasodilation in subjects with type 2 diabetes. J Clin Endocr Metab 83:1946–1952PubMed Hogikyan RV, Galecki AT, Pitt B et al. (1998) Specific impairment of endothelium-dependent vasodilation in subjects with type 2 diabetes. J Clin Endocr Metab 83:1946–1952PubMed
123.
Zurück zum Zitat Tan KC, Ai VH, Chow S et al. (1999) Influence of low density lipoprotein (LDL) subfraction profile and LDL oxidation on endothelium-dependent and independent vasodilation in patients with type 2 diabetes. J Clin Endocrinol Metab 84:3212–3216PubMed Tan KC, Ai VH, Chow S et al. (1999) Influence of low density lipoprotein (LDL) subfraction profile and LDL oxidation on endothelium-dependent and independent vasodilation in patients with type 2 diabetes. J Clin Endocrinol Metab 84:3212–3216PubMed
124.
Zurück zum Zitat Vakkilainen J, Mäkimattila S, Seppälä-Lindroos A et al. (2000) Endothelial dysfunction in men with small LDL particles. Circulation 102:716–721PubMed Vakkilainen J, Mäkimattila S, Seppälä-Lindroos A et al. (2000) Endothelial dysfunction in men with small LDL particles. Circulation 102:716–721PubMed
125.
Zurück zum Zitat Mäkimattila S, Mäntysaari M, Liu M-L et al. (1999) Impaired endothelium-dependent vasodilation in type 2 diabetes. Diabetes Care 22:973–981PubMed Mäkimattila S, Mäntysaari M, Liu M-L et al. (1999) Impaired endothelium-dependent vasodilation in type 2 diabetes. Diabetes Care 22:973–981PubMed
126.
Zurück zum Zitat Chapman MJ, Guérin M, Bruckert E (1998) Atherogenic, dense low-density lipoproteins: Pathophysiology and new therapeutic approaches. Eur Heart J 19 [Suppl A]:A24–A30 Chapman MJ, Guérin M, Bruckert E (1998) Atherogenic, dense low-density lipoproteins: Pathophysiology and new therapeutic approaches. Eur Heart J 19 [Suppl A]:A24–A30
127.
Zurück zum Zitat Kornerup K, Nordestgaard BG, Feldt-Rasmussen B et al. (2002) Transvascular low-density lipoprotein transport in patients with diabetes mellitus (type 2): a noninvasive in vivo isotope technique. Arterioscler Thromb Vasc Biol 22:1168–1174CrossRefPubMed Kornerup K, Nordestgaard BG, Feldt-Rasmussen B et al. (2002) Transvascular low-density lipoprotein transport in patients with diabetes mellitus (type 2): a noninvasive in vivo isotope technique. Arterioscler Thromb Vasc Biol 22:1168–1174CrossRefPubMed
128.
Zurück zum Zitat Galeano NF, Milne R, Marcel YL et al. (1994) Apoprotein B structure and receptor recognition of triglyceride-rich low density lipoprotein (LDL) is modified in small LDL but not in triglyceride-rich LDL of normal size. J Biol Chem 269:511–519PubMed Galeano NF, Milne R, Marcel YL et al. (1994) Apoprotein B structure and receptor recognition of triglyceride-rich low density lipoprotein (LDL) is modified in small LDL but not in triglyceride-rich LDL of normal size. J Biol Chem 269:511–519PubMed
129.
Zurück zum Zitat Anber V, Griffin BA, Mc Connell M et al. (1996) Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 124:261–271CrossRefPubMed Anber V, Griffin BA, Mc Connell M et al. (1996) Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans. Atherosclerosis 124:261–271CrossRefPubMed
130.
Zurück zum Zitat Galeano NF, Al-Haideri M, Keyserman F et al. (1998) Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenity. J Lipid Res 39:1263–1273PubMed Galeano NF, Al-Haideri M, Keyserman F et al. (1998) Small dense low density lipoprotein has increased affinity for LDL receptor-independent cell surface binding sites: a potential mechanism for increased atherogenity. J Lipid Res 39:1263–1273PubMed
131.
Zurück zum Zitat Chait A, Wight TN (2000) Interaction of native and modified low-density lipoproteins with extracellular matrix. Curr Opin Lipidol 11:451–456CrossRefPubMed Chait A, Wight TN (2000) Interaction of native and modified low-density lipoproteins with extracellular matrix. Curr Opin Lipidol 11:451–456CrossRefPubMed
132.
Zurück zum Zitat Tribble DL, Holl LG, Wood PD et al. (1992) Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 93:189–199PubMed Tribble DL, Holl LG, Wood PD et al. (1992) Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size. Atherosclerosis 93:189–199PubMed
133.
Zurück zum Zitat De Graaf J, Lemmers HLM, Hectors MPC et al. (1991) Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 11:198–306PubMed De Graaf J, Lemmers HLM, Hectors MPC et al. (1991) Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb 11:198–306PubMed
134.
Zurück zum Zitat Lyons TJ, Jenkins AJ (1997) Lipoprotein glycation and its metabolic consequences. Current Opin Lipidol 8:174–180 Lyons TJ, Jenkins AJ (1997) Lipoprotein glycation and its metabolic consequences. Current Opin Lipidol 8:174–180
135.
Zurück zum Zitat Onorato JM, Jenkins AJ, Thorpe SR et al. (2000) Pyridoamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridocamine. J Biol Chem 275:21177–21184CrossRefPubMed Onorato JM, Jenkins AJ, Thorpe SR et al. (2000) Pyridoamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridocamine. J Biol Chem 275:21177–21184CrossRefPubMed
136.
Zurück zum Zitat Dimitriadis E, Griffin M, Owens D et al. (1996) Lipoprotein composition in NIDDM. The effect of dietary oleic acid on composition and oxidisability and function of low and high density lipoproteins. Diabetologia 39:667–676CrossRefPubMed Dimitriadis E, Griffin M, Owens D et al. (1996) Lipoprotein composition in NIDDM. The effect of dietary oleic acid on composition and oxidisability and function of low and high density lipoproteins. Diabetologia 39:667–676CrossRefPubMed
137.
Zurück zum Zitat Scheffer PG, Bakker SJL, Popp-Snijders C et al. (2001) Composition of LDL determinant on its susceptibility to in vitro oxidation in patients with well-controlled type 2 diabetes. Diabetes Metab Res Rev 17:459–466CrossRefPubMed Scheffer PG, Bakker SJL, Popp-Snijders C et al. (2001) Composition of LDL determinant on its susceptibility to in vitro oxidation in patients with well-controlled type 2 diabetes. Diabetes Metab Res Rev 17:459–466CrossRefPubMed
138.
Zurück zum Zitat Chancharme L, Thérond P, Nigon F et al. (1999) Cholesteryl ester hydroperoxide lability is a key feature of the oxidative susceptibility of small, dense LDL. Arterioscler Thromb Vasc Biol 19:810–820PubMed Chancharme L, Thérond P, Nigon F et al. (1999) Cholesteryl ester hydroperoxide lability is a key feature of the oxidative susceptibility of small, dense LDL. Arterioscler Thromb Vasc Biol 19:810–820PubMed
139.
Zurück zum Zitat Goldberg IJ (2001) Diabetic dyslipidemia: causes and consequences. J Clin Endocrin Metab 86:965–971 Goldberg IJ (2001) Diabetic dyslipidemia: causes and consequences. J Clin Endocrin Metab 86:965–971
140.
Zurück zum Zitat Syvänne M, Ahola M, Lahdenperä S et al. (1995) High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J Lipid Res 36:573–582PubMed Syvänne M, Ahola M, Lahdenperä S et al. (1995) High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J Lipid Res 36:573–582PubMed
141.
Zurück zum Zitat Pascot A, Lemieux I, Prud'homme D et al. (2001) Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 42:2007–2014PubMed Pascot A, Lemieux I, Prud'homme D et al. (2001) Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 42:2007–2014PubMed
142.
Zurück zum Zitat Syvänne M, Kahri J, Virtanen KS et al. (1995) HDLs containing apolipoproteins A-I and A-II (LpA-I:A-II) as markers of coronary artery disease in men with non-insulin-dependent diabetes mellitus. Circulation 92(3):364–370PubMed Syvänne M, Kahri J, Virtanen KS et al. (1995) HDLs containing apolipoproteins A-I and A-II (LpA-I:A-II) as markers of coronary artery disease in men with non-insulin-dependent diabetes mellitus. Circulation 92(3):364–370PubMed
143.
Zurück zum Zitat Syvänne M, Castro G, Dengremont C et al. (1996) Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis 127:245–253CrossRefPubMed Syvänne M, Castro G, Dengremont C et al. (1996) Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis 127:245–253CrossRefPubMed
144.
Zurück zum Zitat Lamarche B, Rashid S, Lewis G F et al. (1999) HDL metabolism in hypertriglyceridemic states: an overview. Clin Chem Acta 286:145–161CrossRef Lamarche B, Rashid S, Lewis G F et al. (1999) HDL metabolism in hypertriglyceridemic states: an overview. Clin Chem Acta 286:145–161CrossRef
145.
Zurück zum Zitat Lamarche B, Uffelman KD, Carpentier A et al. (1999) Triglyceride enrichement of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest 103:1191–1199PubMed Lamarche B, Uffelman KD, Carpentier A et al. (1999) Triglyceride enrichement of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest 103:1191–1199PubMed
146.
Zurück zum Zitat Rashid S, Barrett HR, Uffelman KD et al. (2002) Lipolytically modified triglyceride-enriched HDLs are rapidly cleared from the circulation. Arterioscler Thromb Vasc Biol 22:483–487 Rashid S, Barrett HR, Uffelman KD et al. (2002) Lipolytically modified triglyceride-enriched HDLs are rapidly cleared from the circulation. Arterioscler Thromb Vasc Biol 22:483–487
147.
Zurück zum Zitat Golay A, Zech L, Shi A-Z et al. (1987) High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL. J Clin Endocrinol Metab 65:512–518PubMed Golay A, Zech L, Shi A-Z et al. (1987) High density lipoprotein (HDL) metabolism in noninsulin-dependent diabetes mellitus: measurement of HDL turnover using tritiated HDL. J Clin Endocrinol Metab 65:512–518PubMed
148.
Zurück zum Zitat Frénais R, Ouguerran K, Maugeais C et al. (1997) High density lipoprotein apolipoprotein AI kinetics in NIDDM: a stable isotype study. Diabetologia 40:578–583CrossRefPubMed Frénais R, Ouguerran K, Maugeais C et al. (1997) High density lipoprotein apolipoprotein AI kinetics in NIDDM: a stable isotype study. Diabetologia 40:578–583CrossRefPubMed
149.
Zurück zum Zitat Pietzsch J, Juselius U, Nitzsche S et al. (1998) In vivo evidence for increased apolipoprotein A-I catabolism in subjects with impaired glucose tolerance. Diabetes 47:1928–1934PubMed Pietzsch J, Juselius U, Nitzsche S et al. (1998) In vivo evidence for increased apolipoprotein A-I catabolism in subjects with impaired glucose tolerance. Diabetes 47:1928–1934PubMed
150.
Zurück zum Zitat Frénais R, Nazih H, Ouguerram K et al. (2001) In vivo evidence for the role of lipoprotein lipase activity in the regulation of apolipoprotein AI metabolism: a kinetic study in control subjects and patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 86:1962–1967PubMed Frénais R, Nazih H, Ouguerram K et al. (2001) In vivo evidence for the role of lipoprotein lipase activity in the regulation of apolipoprotein AI metabolism: a kinetic study in control subjects and patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 86:1962–1967PubMed
151.
Zurück zum Zitat Von Eckardstein A, Nofer J-R, Assmann G (2001) High density lipoproteins and arteriosclerosis, role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27PubMed Von Eckardstein A, Nofer J-R, Assmann G (2001) High density lipoproteins and arteriosclerosis, role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27PubMed
152.
Zurück zum Zitat Tu A-Y, Albers JJ (2001) Glucose regulates the transcriptions of human genes relevant to HDL metabolism: Responsive elements for peroxisome proliferator-activated receptor are involved in the regulation of phospholipid transfer protein. Diabetes 50:1851–1856PubMed Tu A-Y, Albers JJ (2001) Glucose regulates the transcriptions of human genes relevant to HDL metabolism: Responsive elements for peroxisome proliferator-activated receptor are involved in the regulation of phospholipid transfer protein. Diabetes 50:1851–1856PubMed
153.
Zurück zum Zitat Riemens SC, Tol A van, Sluiter WJ et al. (1999) Plasma phospholipid transfer protein activity is lowered by 24-h insulin and acipimox administration. Diabetes 48:1631–1637PubMed Riemens SC, Tol A van, Sluiter WJ et al. (1999) Plasma phospholipid transfer protein activity is lowered by 24-h insulin and acipimox administration. Diabetes 48:1631–1637PubMed
154.
Zurück zum Zitat Miettinen H, Haffner SM, Lehto S et al. (1998) Impact of diabetes on mortality after the first myocardial infarction. Diabetes Care 21:69–75PubMed Miettinen H, Haffner SM, Lehto S et al. (1998) Impact of diabetes on mortality after the first myocardial infarction. Diabetes Care 21:69–75PubMed
155.
Zurück zum Zitat Mukamai KJ, Maclure M, Nesto RW et al. (2001) Impact of diabetes on long-term survival after acute myocardial infarction. Diabetes Care 24:1422–1427PubMed Mukamai KJ, Maclure M, Nesto RW et al. (2001) Impact of diabetes on long-term survival after acute myocardial infarction. Diabetes Care 24:1422–1427PubMed
156.
Zurück zum Zitat Haffner SM (2003) Management of dyslipidemia in adults with diabetes. Diabetes Care 26 [Suppl]:S83–S86 Haffner SM (2003) Management of dyslipidemia in adults with diabetes. Diabetes Care 26 [Suppl]:S83–S86
157.
Zurück zum Zitat Pyörälä K, Pedersen TR, Kjekshus J et al. (1997) Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. Diabetes Care 20:614–621PubMed Pyörälä K, Pedersen TR, Kjekshus J et al. (1997) Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease. Diabetes Care 20:614–621PubMed
158.
Zurück zum Zitat Goldberg RB, Mellies MJ, Sacks FM et al. (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. Circulation 98:2513–2519PubMed Goldberg RB, Mellies MJ, Sacks FM et al. (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. Circulation 98:2513–2519PubMed
159.
Zurück zum Zitat Sacks FM, Tonkin AM, Craven T et al. (2002) Coronary heart disease in patients with with low LDL-cholesterol: benefit of pravastatin in diabetics and enhanced role for HDL-cholesterol and triglycerides as risk factors. Circulation 105:1424–1428CrossRefPubMed Sacks FM, Tonkin AM, Craven T et al. (2002) Coronary heart disease in patients with with low LDL-cholesterol: benefit of pravastatin in diabetics and enhanced role for HDL-cholesterol and triglycerides as risk factors. Circulation 105:1424–1428CrossRefPubMed
160.
Zurück zum Zitat Heart Protection Study Collaborative Group (2002) MRC/BHF heart production study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:7–22CrossRefPubMed Heart Protection Study Collaborative Group (2002) MRC/BHF heart production study of cholesterol lowering with simvastatin in 20 536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:7–22CrossRefPubMed
161.
Zurück zum Zitat Armitage J, Collins R (2000) Need for large scale randomised evidence about lowering LDL cholesterol in people with diabetes mellitus: MRC/BHF heart protection study and other major trials. Heart 84:357–360CrossRefPubMed Armitage J, Collins R (2000) Need for large scale randomised evidence about lowering LDL cholesterol in people with diabetes mellitus: MRC/BHF heart protection study and other major trials. Heart 84:357–360CrossRefPubMed
162.
Zurück zum Zitat U.K. Prospective diabetes study group (1997) Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care 20:1683–1687PubMed U.K. Prospective diabetes study group (1997) Plasma lipids and lipoproteins at diagnosis of NIDDM by age and sex. Diabetes Care 20:1683–1687PubMed
163.
Zurück zum Zitat Diabetes atherosclerosis intervention study investigators (2001) Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis intervention study, a randomised study. The Lancet 357:905–910CrossRef Diabetes atherosclerosis intervention study investigators (2001) Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis intervention study, a randomised study. The Lancet 357:905–910CrossRef
164.
Zurück zum Zitat Gotto A, Farmer J A (2001) Pleiotropic effects of stations: do they mater? Curr Opin Lipidol 12:391–394 Gotto A, Farmer J A (2001) Pleiotropic effects of stations: do they mater? Curr Opin Lipidol 12:391–394
165.
Zurück zum Zitat McFarlane S I, Muniyappa R, Francisco R et al. (2002) Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 87(4):1451–1458PubMed McFarlane S I, Muniyappa R, Francisco R et al. (2002) Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocrinol Metab 87(4):1451–1458PubMed
166.
Zurück zum Zitat Liao JK (2002) Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol 86:5–18CrossRefPubMed Liao JK (2002) Beyond lipid lowering: the role of statins in vascular protection. Int J Cardiol 86:5–18CrossRefPubMed
167.
Zurück zum Zitat Bloomfield Rubins H, Robins SJ, Collins D et al. (2002) Diabetes, Plasma insulin and cardiovascular disease. Arch Intern Med 162:2597–2604CrossRefPubMed Bloomfield Rubins H, Robins SJ, Collins D et al. (2002) Diabetes, Plasma insulin and cardiovascular disease. Arch Intern Med 162:2597–2604CrossRefPubMed
168.
Zurück zum Zitat Fruchart J-C, Duriwz P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10:245–257PubMed Fruchart J-C, Duriwz P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10:245–257PubMed
169.
Zurück zum Zitat Fruchart J-C, Staels B, Duriez P (2002) PPAR-alpha, lipoprotein metabolism, metabolic diseases and atherosclerosis. In: Fruchart J-C, Gotto AM Jr, Paoletti R, Staels B, Catapano AL (eds) Peroxisome Proliferator Activated Receptors: from basic science to clinical applications,18. Kluwer, Dordrecht, pp 63–79 Fruchart J-C, Staels B, Duriez P (2002) PPAR-alpha, lipoprotein metabolism, metabolic diseases and atherosclerosis. In: Fruchart J-C, Gotto AM Jr, Paoletti R, Staels B, Catapano AL (eds) Peroxisome Proliferator Activated Receptors: from basic science to clinical applications,18. Kluwer, Dordrecht, pp 63–79
170.
Zurück zum Zitat Chinetti G, Lestavel S, Bocher V et al. (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58PubMed Chinetti G, Lestavel S, Bocher V et al. (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58PubMed
171.
Zurück zum Zitat Singaraja RR, Fievet C, Castro G et al. (2002) Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 110:35–42CrossRefPubMed Singaraja RR, Fievet C, Castro G et al. (2002) Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 110:35–42CrossRefPubMed
172.
Zurück zum Zitat Martens F, Visseren F, Lemay J et al. (2002) Metabolic and additional vascular effects of thiazolidinediones. Drugs 62:1463–1480PubMed Martens F, Visseren F, Lemay J et al. (2002) Metabolic and additional vascular effects of thiazolidinediones. Drugs 62:1463–1480PubMed
173.
Zurück zum Zitat Duval C, Chinetti G, Trottein F et al. (2002) The role of PPARs in atherosclerosis. TRENDS in Molecular Medicine 8:422–430CrossRefPubMed Duval C, Chinetti G, Trottein F et al. (2002) The role of PPARs in atherosclerosis. TRENDS in Molecular Medicine 8:422–430CrossRefPubMed
174.
Zurück zum Zitat Etgen GJ, Oldham BA, Johnson WT et al. (2002) A tailored therapy for the metabolic syndrome: the dual peroxisome proliferator-activated receptor-α/γ agonist LY465608 ameliorates insulin resistance and diabetic hyperglycemia while improving cardiovascular risk factors in preclinical models. Diabetes 51:1083–1087PubMed Etgen GJ, Oldham BA, Johnson WT et al. (2002) A tailored therapy for the metabolic syndrome: the dual peroxisome proliferator-activated receptor-α/γ agonist LY465608 ameliorates insulin resistance and diabetic hyperglycemia while improving cardiovascular risk factors in preclinical models. Diabetes 51:1083–1087PubMed
175.
Zurück zum Zitat Lindén D, Lindberg K, Oscarsson J et al. (2002) Influence of peroxisome proliferator-activated receptor α agonist on the intracellular turnover and secreation of apolipoprotein (Apo) B-100 and ApoB-48. J Biol Chem 277:23044–23053CrossRefPubMed Lindén D, Lindberg K, Oscarsson J et al. (2002) Influence of peroxisome proliferator-activated receptor α agonist on the intracellular turnover and secreation of apolipoprotein (Apo) B-100 and ApoB-48. J Biol Chem 277:23044–23053CrossRefPubMed
176.
Zurück zum Zitat Sugden MC, Bulmer K, Gibbons GF et al. (2002) Peroxisome-proliferator-activated receptor-α (PPARα) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem J 364:361–368CrossRefPubMed Sugden MC, Bulmer K, Gibbons GF et al. (2002) Peroxisome-proliferator-activated receptor-α (PPARα) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem J 364:361–368CrossRefPubMed
177.
Zurück zum Zitat Mayerson AB, Hundal RS, Dufour S et al. (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51:797–802PubMed Mayerson AB, Hundal RS, Dufour S et al. (2002) The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 51:797–802PubMed
178.
Zurück zum Zitat Nichols AV, Krauss RM, Musliner TA (1986) Nondenaturing polyacrylamide gradient gel electrophoresis. Methods Enzymol 128:417–431PubMed Nichols AV, Krauss RM, Musliner TA (1986) Nondenaturing polyacrylamide gradient gel electrophoresis. Methods Enzymol 128:417–431PubMed
Metadaten
Titel
Diabetic dyslipidaemia: from basic research to clinical practice*
verfasst von
Dr. M.-R. Taskinen
Publikationsdatum
01.06.2003
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 6/2003
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-003-1111-y

Weitere Artikel der Ausgabe 6/2003

Diabetologia 6/2003 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.