Skip to main content
Erschienen in: Diabetologia 10/2003

01.10.2003 | Review

Fatty acid metabolism and insulin secretion in pancreatic beta cells

verfasst von: G. C. Yaney, Dr. B. E. Corkey

Erschienen in: Diabetologia | Ausgabe 10/2003

Einloggen, um Zugang zu erhalten

Abstract

Increases in glucose or fatty acids affect metabolism via changes in long-chain acyl-CoA formation and chronically elevated fatty acids increase total cellular CoA. Understanding the response of pancreatic beta cells to increased amounts of fuel and the role that altered insulin secretion plays in the development and maintenance of obesity and Type 2 diabetes is important. Data indicate that the activated form of fatty acids acts as an effector molecule in stimulus-secretion coupling. Glucose increases cytosolic long-chain acyl-CoA because it increases the "switch" compound malonyl-CoA that blocks mitochondrial β-oxidation, thus implementing a shift from fatty acid to glucose oxidation. We present arguments in support of the following: (i) A source of fatty acid either exogenous or endogenous (derived by lipolysis of triglyceride) is necessary to support normal insulin secretion; (ii) a rapid increase of fatty acids potentiates glucose-stimulated secretion by increasing fatty acyl-CoA or complex lipid concentrations that act distally by modulating key enzymes such as protein kinase C or the exocytotic machinery; (iii) a chronic increase of fatty acids enhances basal secretion by the same mechanism, but promotes obesity and a diminished response to stimulatory glucose; (iv) agents which raise cAMP act as incretins, at least in part, by stimulating lipolysis via beta-cell hormone-sensitive lipase activation. Furthermore, increased triglyceride stores can give higher rates of lipolysis and thus influence both basal and stimulated insulin secretion. These points highlight the important roles of NEFA, LC-CoA, and their esterified derivatives in affecting insulin secretion in both normal and pathological states.
Literatur
1.
Zurück zum Zitat Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefPubMed Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787CrossRefPubMed
2.
Zurück zum Zitat Fraze E, Donner CC, Swislocki AL, Chiou YA, Chen YD, Reaven GM (1985) Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 61:807–811 Fraze E, Donner CC, Swislocki AL, Chiou YA, Chen YD, Reaven GM (1985) Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J Clin Endocrinol Metab 61:807–811
3.
Zurück zum Zitat Lewis B, Mancini M, Mattock M, Chait A, Fraser TR (1972) Plasma triglyceride and fatty acid metabolism in diabetes mellitus. Eur J Clin Invest 2:445–453PubMed Lewis B, Mancini M, Mattock M, Chait A, Fraser TR (1972) Plasma triglyceride and fatty acid metabolism in diabetes mellitus. Eur J Clin Invest 2:445–453PubMed
4.
Zurück zum Zitat McGarry JD (1992) What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258:766–770 McGarry JD (1992) What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258:766–770
5.
Zurück zum Zitat Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–148PubMed Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–148PubMed
6.
Zurück zum Zitat Porte D Jr (1991) Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes 40:166–180PubMed Porte D Jr (1991) Banting lecture 1990. Beta-cells in type II diabetes mellitus. Diabetes 40:166–180PubMed
7.
Zurück zum Zitat Arch JR, Ainsworth AT, Cawthorne MA et al. (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165PubMed Arch JR, Ainsworth AT, Cawthorne MA et al. (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165PubMed
8.
Zurück zum Zitat Bloom JD, Dutia MD, Johnson BD et al. (1992) Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino] propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316,243). A potent beta-adrenergic agonist virtually specific for β3 receptors. A promising antidiabetic and antiobesity agent. J Med Chem 35:3081–3084PubMed Bloom JD, Dutia MD, Johnson BD et al. (1992) Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino] propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316,243). A potent beta-adrenergic agonist virtually specific for β3 receptors. A promising antidiabetic and antiobesity agent. J Med Chem 35:3081–3084PubMed
9.
Zurück zum Zitat Holloway BR, Howe R, Rao BS, Stribling D (1992) ICI D7114: a novel selective adrenoceptor agonist of brown fat and thermogenesis. Am J Clin Nutr 55:262S–264SPubMed Holloway BR, Howe R, Rao BS, Stribling D (1992) ICI D7114: a novel selective adrenoceptor agonist of brown fat and thermogenesis. Am J Clin Nutr 55:262S–264SPubMed
10.
Zurück zum Zitat Yoshida T (1992) The antidiabetic β3-adrenoceptor agonist BRL 26830A works by release of endogenous insulin. Am J Clin Nutr 55:237S–241SPubMed Yoshida T (1992) The antidiabetic β3-adrenoceptor agonist BRL 26830A works by release of endogenous insulin. Am J Clin Nutr 55:237S–241SPubMed
11.
Zurück zum Zitat Himms-Hagen J, Cui J, Danforth E Jr et al. (1994) Effect of CL-316,243, a thermogenic β3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 266:R1371–R1382PubMed Himms-Hagen J, Cui J, Danforth E Jr et al. (1994) Effect of CL-316,243, a thermogenic β3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 266:R1371–R1382PubMed
12.
Zurück zum Zitat Susulic VS, Frederich RC, Lawitts J et al. (1995) Targeted disruption of the β3-adrenergic receptor gene. J Biol Chem 270:29483–29492CrossRefPubMed Susulic VS, Frederich RC, Lawitts J et al. (1995) Targeted disruption of the β3-adrenergic receptor gene. J Biol Chem 270:29483–29492CrossRefPubMed
13.
Zurück zum Zitat Grujic D, Susulic VS, Harper ME et al. (1997) β3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272:17686–17693CrossRefPubMed Grujic D, Susulic VS, Harper ME et al. (1997) β3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272:17686–17693CrossRefPubMed
14.
Zurück zum Zitat Hedeskov CJ (1980) Mechanism of glucose-induced insulin secretion. Physiol Rev 60:442–509PubMed Hedeskov CJ (1980) Mechanism of glucose-induced insulin secretion. Physiol Rev 60:442–509PubMed
15.
Zurück zum Zitat Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312:446–448PubMed Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 312:446–448PubMed
16.
Zurück zum Zitat Arkhammar P, Nilsson T, Rorsman P, Berggren PO (1987) Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic β-cells. J Biol Chem 262:5448–5454PubMed Arkhammar P, Nilsson T, Rorsman P, Berggren PO (1987) Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic β-cells. J Biol Chem 262:5448–5454PubMed
17.
Zurück zum Zitat Prentki M, Matschinsky FM (1987) Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67:1185–1248PubMed Prentki M, Matschinsky FM (1987) Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67:1185–1248PubMed
18.
Zurück zum Zitat Turk J, Wolf BA, McDaniel ML (1987) The role of phospholipid-derived mediators including arachidonic acid, its metabolites, and inositoltrisphosphate and of intracellular Ca2+ in glucose-induced insulin secretion by pancreatic islets. Prog Lipid Res 26:125–181CrossRefPubMed Turk J, Wolf BA, McDaniel ML (1987) The role of phospholipid-derived mediators including arachidonic acid, its metabolites, and inositoltrisphosphate and of intracellular Ca2+ in glucose-induced insulin secretion by pancreatic islets. Prog Lipid Res 26:125–181CrossRefPubMed
19.
Zurück zum Zitat Corkey BE, Tornheim K, Deeney JT et al. (1988) Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J Biol Chem 263:4254–4258PubMed Corkey BE, Tornheim K, Deeney JT et al. (1988) Linked oscillations of free Ca2+ and the ATP/ADP ratio in permeabilized RINm5F insulinoma cells supplemented with a glycolyzing cell-free muscle extract. J Biol Chem 263:4254–4258PubMed
20.
Zurück zum Zitat Corkey BE, Deeney JT, Glennon MC, Matschinsky FM, Prentki M (1988) Regulation of steady-state free Ca2+ levels by the ATP/ADP ratio and orthophosphate in permeabilized RINm5F insulinoma cells. J Biol Chem 263:4247–4253PubMed Corkey BE, Deeney JT, Glennon MC, Matschinsky FM, Prentki M (1988) Regulation of steady-state free Ca2+ levels by the ATP/ADP ratio and orthophosphate in permeabilized RINm5F insulinoma cells. J Biol Chem 263:4247–4253PubMed
21.
Zurück zum Zitat Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266:9314–9319PubMed Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated rat pancreatic islets. J Biol Chem 266:9314–9319PubMed
22.
Zurück zum Zitat Malaisse WJ, Malaisse-Lagae F, Sener A (1984) Coupling factors in nutrient-induced insulin release. Experientia 40:1035–1043PubMed Malaisse WJ, Malaisse-Lagae F, Sener A (1984) Coupling factors in nutrient-induced insulin release. Experientia 40:1035–1043PubMed
23.
Zurück zum Zitat Pralong WF, Bartley C, Wollheim CB (1990) Single islet β-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J 9:53–60PubMed Pralong WF, Bartley C, Wollheim CB (1990) Single islet β-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J 9:53–60PubMed
24.
Zurück zum Zitat Corkey B, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M (1989) A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic β-cells. J Biol Chem 264:21608–21612PubMed Corkey B, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M (1989) A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic β-cells. J Biol Chem 264:21608–21612PubMed
25.
Zurück zum Zitat Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE (1992) Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 267:5802–5810PubMed Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE (1992) Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 267:5802–5810PubMed
26.
Zurück zum Zitat Chen S, Ogawa A, Ohneda M, Unger RH, Foster DW, McGarry JD (1994) More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic β-cell signaling. Diabetes 43:878–883PubMed Chen S, Ogawa A, Ohneda M, Unger RH, Foster DW, McGarry JD (1994) More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic β-cell signaling. Diabetes 43:878–883PubMed
27.
Zurück zum Zitat Berne C (1975) The metabolism of lipids in mouse pancreatic islets. The biosynthesis of triacylglycerols and phospholipids. Biochem J 152:667–673PubMed Berne C (1975) The metabolism of lipids in mouse pancreatic islets. The biosynthesis of triacylglycerols and phospholipids. Biochem J 152:667–673PubMed
28.
Zurück zum Zitat Berne C (1975) The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies. Biochem J 152:661–666PubMed Berne C (1975) The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies. Biochem J 152:661–666PubMed
29.
Zurück zum Zitat Vara E, Tamarit-Rodriguez J (1986) Glucose stimulation of insulin secretion in islets of fed and starved rats and its dependence on lipid metabolism. Metab Clin Exp 35:266–271PubMed Vara E, Tamarit-Rodriguez J (1986) Glucose stimulation of insulin secretion in islets of fed and starved rats and its dependence on lipid metabolism. Metab Clin Exp 35:266–271PubMed
30.
Zurück zum Zitat Peter-Riesch B, Fathi M, Schlegel W, Wollheim CB (1988) Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest 81:1154–1161PubMed Peter-Riesch B, Fathi M, Schlegel W, Wollheim CB (1988) Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest 81:1154–1161PubMed
31.
Zurück zum Zitat Yaney GC, Korchak HM, Corkey BE (2000) Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal β-cells. Endocrinology 141:1989–1998PubMed Yaney GC, Korchak HM, Corkey BE (2000) Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal β-cells. Endocrinology 141:1989–1998PubMed
32.
Zurück zum Zitat Prentki M, Corkey BE (1996) Are the β-cell signaling molecules malonyl-CoA and cytosolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273–283PubMed Prentki M, Corkey BE (1996) Are the β-cell signaling molecules malonyl-CoA and cytosolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273–283PubMed
33.
Zurück zum Zitat MacDonald MJ (1995) Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 270:20051–20058PubMed MacDonald MJ (1995) Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 270:20051–20058PubMed
34.
Zurück zum Zitat MacDonald MJ (1993) Estimates of glycolysis, pyruvate (de)carboxylation, pentose phosphate pathway, and methyl succinate metabolism in incapacitated pancreatic islets. Arch Biochem Biophys 305:205–214CrossRefPubMed MacDonald MJ (1993) Estimates of glycolysis, pyruvate (de)carboxylation, pentose phosphate pathway, and methyl succinate metabolism in incapacitated pancreatic islets. Arch Biochem Biophys 305:205–214CrossRefPubMed
35.
Zurück zum Zitat MacDonald MJ, McKenzie DI, Walker TM, Kaysen JH (1992) Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets. Horm Metab Res 24:158–160PubMed MacDonald MJ, McKenzie DI, Walker TM, Kaysen JH (1992) Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets. Horm Metab Res 24:158–160PubMed
36.
Zurück zum Zitat Brun T, Roche E, Assimacopoulos-Jeannet F, Corkey BE, Kim KH, Prentki M (1996) Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic β-cell nutrient signaling. Diabetes 45:190–198PubMed Brun T, Roche E, Assimacopoulos-Jeannet F, Corkey BE, Kim KH, Prentki M (1996) Evidence for an anaplerotic/malonyl-CoA pathway in pancreatic β-cell nutrient signaling. Diabetes 45:190–198PubMed
37.
Zurück zum Zitat Farfari S, Schulz V, Corkey B, Prentki M (2000) Glucose-regulated anaplerosis and cataplerosis in pancreatic β-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 49:718–726PubMed Farfari S, Schulz V, Corkey B, Prentki M (2000) Glucose-regulated anaplerosis and cataplerosis in pancreatic β-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion. Diabetes 49:718–726PubMed
38.
Zurück zum Zitat Schuit F, De Vos A, Farfari S et al. (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579PubMed Schuit F, De Vos A, Farfari S et al. (1997) Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem 272:18572–18579PubMed
39.
Zurück zum Zitat MacDonald MJ, Fahien LA (1990) Insulin release in pancreatic islets by a glycolytic and a Krebs cycle intermediate: contrasting patterns of glyceraldehyde phosphate and succinate. Arch Biochem Biophys 279:104–108PubMed MacDonald MJ, Fahien LA (1990) Insulin release in pancreatic islets by a glycolytic and a Krebs cycle intermediate: contrasting patterns of glyceraldehyde phosphate and succinate. Arch Biochem Biophys 279:104–108PubMed
40.
Zurück zum Zitat Maechler P, Kennedy ED, Pozzan T, Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic β-cells. EMBO J 16:3833–3841PubMed Maechler P, Kennedy ED, Pozzan T, Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic β-cells. EMBO J 16:3833–3841PubMed
41.
Zurück zum Zitat Biden TJ, Taylor KW (1983) Effects of ketone bodies on insulin release and islet-cell metabolism in the rat. Biochem J 212:371–377PubMed Biden TJ, Taylor KW (1983) Effects of ketone bodies on insulin release and islet-cell metabolism in the rat. Biochem J 212:371–377PubMed
42.
Zurück zum Zitat Malaisse WJ, Malaisse-Lagae F, Rasschaert J et al. (1990) The fuel concept for insulin release: regulation of glucose phosphorylation in pancreatic islets. Biochem Soc Trans 18:107–108PubMed Malaisse WJ, Malaisse-Lagae F, Rasschaert J et al. (1990) The fuel concept for insulin release: regulation of glucose phosphorylation in pancreatic islets. Biochem Soc Trans 18:107–108PubMed
43.
Zurück zum Zitat Alcazar O, Qiu-yue Z, Gine E, Tamarit-Rodriguez J (1997) Stimulation of islet protein kinase C translocation by palmitate requires metabolism of the fatty acid. Diabetes 46:1153–1158PubMed Alcazar O, Qiu-yue Z, Gine E, Tamarit-Rodriguez J (1997) Stimulation of islet protein kinase C translocation by palmitate requires metabolism of the fatty acid. Diabetes 46:1153–1158PubMed
44.
Zurück zum Zitat Prentki M, Tornheim K, Corkey BE (1997) Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetalogia 40:S32–S41CrossRef Prentki M, Tornheim K, Corkey BE (1997) Signal transduction mechanisms in nutrient-induced insulin secretion. Diabetalogia 40:S32–S41CrossRef
45.
Zurück zum Zitat Aguilar-Bryan L, Nichols CG, Wechsler SW et al. (1995) Cloning of the β-cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426PubMed Aguilar-Bryan L, Nichols CG, Wechsler SW et al. (1995) Cloning of the β-cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426PubMed
46.
Zurück zum Zitat Seino S, Chen L, Seino M et al. (1992) Cloning of the α1-subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci USA 89:584–588PubMed Seino S, Chen L, Seino M et al. (1992) Cloning of the α1-subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci USA 89:584–588PubMed
47.
Zurück zum Zitat Yaney GC, Wheeler MB, Wei X et al. (1992) Cloning of a novel α1-subunit of the voltage-dependent calcium channel from the β-cell. Mol Endocrinol 6:2143–2152PubMed Yaney GC, Wheeler MB, Wei X et al. (1992) Cloning of a novel α1-subunit of the voltage-dependent calcium channel from the β-cell. Mol Endocrinol 6:2143–2152PubMed
48.
Zurück zum Zitat Aizawa T, Sato Y, Ishihara F et al. (1994) ATP-sensitive K+ channel-independent glucose action in rat pancreatic β-cell. Am J Physiol 266:C622–C627PubMed Aizawa T, Sato Y, Ishihara F et al. (1994) ATP-sensitive K+ channel-independent glucose action in rat pancreatic β-cell. Am J Physiol 266:C622–C627PubMed
49.
Zurück zum Zitat Gembal M, Detimary P, Gilon P, Gao ZY, Henquin JC (1993) Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest 91:871–880PubMed Gembal M, Detimary P, Gilon P, Gao ZY, Henquin JC (1993) Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells. J Clin Invest 91:871–880PubMed
50.
Zurück zum Zitat Komatsu M, Schermerhorn T, Aizawa T, Sharp GW (1995) Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets. Proc Natl Acad Sci USA 92:10728–10732PubMed Komatsu M, Schermerhorn T, Aizawa T, Sharp GW (1995) Glucose stimulation of insulin release in the absence of extracellular Ca2+ and in the absence of any increase in intracellular Ca2+ in rat pancreatic islets. Proc Natl Acad Sci USA 92:10728–10732PubMed
51.
Zurück zum Zitat Jonas J-C, Gilon, P and J-C Henquin (1998) Temporal and quantitative corelations between insulin secretion and stably elevated or oscillatory cytoplasmic Ca2+ in mouse pancreatic β-cells. Diabetes 47:1266–1273PubMed Jonas J-C, Gilon, P and J-C Henquin (1998) Temporal and quantitative corelations between insulin secretion and stably elevated or oscillatory cytoplasmic Ca2+ in mouse pancreatic β-cells. Diabetes 47:1266–1273PubMed
52.
Zurück zum Zitat Komatsu M, Sharp GW (1998) Palmitate and myristate selectively mimic the effect of glucose in augmenting insulin release in the absence of extracellular Ca2+. Diabetes 47:352–357PubMed Komatsu M, Sharp GW (1998) Palmitate and myristate selectively mimic the effect of glucose in augmenting insulin release in the absence of extracellular Ca2+. Diabetes 47:352–357PubMed
53.
Zurück zum Zitat Roche E, Farfari S, Witters LA et al. (1998) Long-term Exposure of β-INS cells to high glucose concentrations increases anaplerosis, and lipogenic gene expression. Diabetes 47:1086–1094PubMed Roche E, Farfari S, Witters LA et al. (1998) Long-term Exposure of β-INS cells to high glucose concentrations increases anaplerosis, and lipogenic gene expression. Diabetes 47:1086–1094PubMed
54.
Zurück zum Zitat Zhang S, Kim KH (1998) Essential role of acetyl-CoA carboxylase in the glucose-induced insulin secretion in a pancreatic β-cell line. Cell Signal 10:35–42CrossRefPubMed Zhang S, Kim KH (1998) Essential role of acetyl-CoA carboxylase in the glucose-induced insulin secretion in a pancreatic β-cell line. Cell Signal 10:35–42CrossRefPubMed
55.
Zurück zum Zitat Tornheim K (1997) Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46:1375–1380PubMed Tornheim K (1997) Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes 46:1375–1380PubMed
56.
Zurück zum Zitat Gumbiner B, Van Cauter E, Beltz WF et al. (1996) Abnormalities of insulin pulsatility and glucose oscillations during meals in obese noninsulin-dependent diabetic patients: effects of weight reduction. J Clin Endocrinol Metab 81:2061–2068PubMed Gumbiner B, Van Cauter E, Beltz WF et al. (1996) Abnormalities of insulin pulsatility and glucose oscillations during meals in obese noninsulin-dependent diabetic patients: effects of weight reduction. J Clin Endocrinol Metab 81:2061–2068PubMed
57.
Zurück zum Zitat Porksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O (2002) Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51:S245–S254PubMed Porksen N, Hollingdal M, Juhl C, Butler P, Veldhuis JD, Schmitz O (2002) Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51:S245–S254PubMed
58.
Zurück zum Zitat Nilsson T, Schultz V, Berggren PO, Corkey BE, Tornheim K (1996) Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J 314:91–94PubMed Nilsson T, Schultz V, Berggren PO, Corkey BE, Tornheim K (1996) Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J 314:91–94PubMed
59.
Zurück zum Zitat Deeney JT, Kohler M, Kubik K et al. (2001) Glucose-induced metabolic oscillations parallel those of Ca2+ and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J Biol Chem 276:36946–36950CrossRefPubMed Deeney JT, Kohler M, Kubik K et al. (2001) Glucose-induced metabolic oscillations parallel those of Ca2+ and insulin release in clonal insulin-secreting cells. A multiwell approach to oscillatory cell behavior. J Biol Chem 276:36946–36950CrossRefPubMed
60.
Zurück zum Zitat Civelek VN, Deeney JT, Shalosky NJ et al. (1996) Regulation of β-cell mitochondrial function: Influence of Ca2+, substrate, and ADP on oxygen consumption by permeabilized clonal pancreatic β-cells. Biochem J 318:615–621PubMed Civelek VN, Deeney JT, Shalosky NJ et al. (1996) Regulation of β-cell mitochondrial function: Influence of Ca2+, substrate, and ADP on oxygen consumption by permeabilized clonal pancreatic β-cells. Biochem J 318:615–621PubMed
61.
Zurück zum Zitat Yaney GC, Schultz V, Cunningham BA, Dunaway GA, Corkey BE, Tornheim K (1995) Phosphofructokinase isozymes in pancreatic islets and clonal β-cells (INS-1). Diabetes 44:1285–1289PubMed Yaney GC, Schultz V, Cunningham BA, Dunaway GA, Corkey BE, Tornheim K (1995) Phosphofructokinase isozymes in pancreatic islets and clonal β-cells (INS-1). Diabetes 44:1285–1289PubMed
62.
Zurück zum Zitat Civelek VN, Deeney JT, Kubik K, Schultz V, Tornheim K, Corkey BE (1996) Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT). Biochem J 315:1015–1019PubMed Civelek VN, Deeney JT, Kubik K, Schultz V, Tornheim K, Corkey BE (1996) Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic beta-cells (HIT). Biochem J 315:1015–1019PubMed
63.
Zurück zum Zitat Larsson O, Deeney JT, Bränström R, Berggren PO, Corkey BE (1996) Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic β-cell glucose sensitivity. J Biol Chem 271:10623–10626CrossRefPubMed Larsson O, Deeney JT, Bränström R, Berggren PO, Corkey BE (1996) Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic β-cell glucose sensitivity. J Biol Chem 271:10623–10626CrossRefPubMed
64.
Zurück zum Zitat Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O (1998) Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J Biol Chem 273:31395–31400CrossRefPubMed Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O (1998) Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J Biol Chem 273:31395–31400CrossRefPubMed
65.
Zurück zum Zitat Bränström R, Corkey BE, Berggren PO, Larsson O (1997) Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic β-cells. J Biol Chem 272:17390–17394CrossRefPubMed Bränström R, Corkey BE, Berggren PO, Larsson O (1997) Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic β-cells. J Biol Chem 272:17390–17394CrossRefPubMed
66.
Zurück zum Zitat Gribble FM, Proks P, Corkey BE, Ashcroft FM (1998) Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J Biol Chem 273:26383–26387CrossRefPubMed Gribble FM, Proks P, Corkey BE, Ashcroft FM (1998) Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J Biol Chem 273:26383–26387CrossRefPubMed
67.
Zurück zum Zitat Malaisse WJ, Best L, Kawazu S, Malaisse-Lagae F, Sener A (1983) The stimulus-secretion coupling of glucose-induced insulin release: fuel metabolism in islets deprived of exogenous nutrient. Arch Biochem Biophys 224:102–110PubMed Malaisse WJ, Best L, Kawazu S, Malaisse-Lagae F, Sener A (1983) The stimulus-secretion coupling of glucose-induced insulin release: fuel metabolism in islets deprived of exogenous nutrient. Arch Biochem Biophys 224:102–110PubMed
68.
Zurück zum Zitat Hellerstrom C (1967) Effects of carbohydrates on the oxygen consumption of isolated pancreatic islets of mice. Endocrinology 81:105–112 Hellerstrom C (1967) Effects of carbohydrates on the oxygen consumption of isolated pancreatic islets of mice. Endocrinology 81:105–112
69.
Zurück zum Zitat Deeney JT, Gromada J, Hoy M et al. (2000) Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem 275:9363–9368CrossRefPubMed Deeney JT, Gromada J, Hoy M et al. (2000) Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem 275:9363–9368CrossRefPubMed
70.
Zurück zum Zitat Hamilton JA, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269PubMed Hamilton JA, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269PubMed
71.
Zurück zum Zitat Grupping AY, Cnop M, Van Schravendijk CF, Hannaert JC, Van Berkel TJ, Pipeleers DG (1997) Low density lipoprotein binding and uptake by human and rat islet beta cells. Endocrinology 138:4064–4068PubMed Grupping AY, Cnop M, Van Schravendijk CF, Hannaert JC, Van Berkel TJ, Pipeleers DG (1997) Low density lipoprotein binding and uptake by human and rat islet beta cells. Endocrinology 138:4064–4068PubMed
72.
Zurück zum Zitat Cruz WS, Kwon G, Marshall CA, McDaniel ML, Semenkovich CF (2001) Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and β-cell dysfunction. J Biol Chem 276:12162–12168CrossRefPubMed Cruz WS, Kwon G, Marshall CA, McDaniel ML, Semenkovich CF (2001) Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and β-cell dysfunction. J Biol Chem 276:12162–12168CrossRefPubMed
73.
Zurück zum Zitat McGarry JD, Sen A, Esser V, Woeltje KF, Weis B, Foster DW (1991) New insights into the mitochondrial carnitine palmitoyltransferase enzyme system. Biochimie 73:77–84CrossRefPubMed McGarry JD, Sen A, Esser V, Woeltje KF, Weis B, Foster DW (1991) New insights into the mitochondrial carnitine palmitoyltransferase enzyme system. Biochimie 73:77–84CrossRefPubMed
74.
Zurück zum Zitat Boylan JG, Hamilton JA (1992) Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin. Biochemistry 31:557–567PubMed Boylan JG, Hamilton JA (1992) Interactions of acyl-coenzyme A with phosphatidylcholine bilayers and serum albumin. Biochemistry 31:557–567PubMed
75.
Zurück zum Zitat Corkey BE, Deeney JT (1990) Acyl CoA regulation of metabolism and signal transduction. Prog Clin Biol Res 321:217–232PubMed Corkey BE, Deeney JT (1990) Acyl CoA regulation of metabolism and signal transduction. Prog Clin Biol Res 321:217–232PubMed
76.
Zurück zum Zitat Corkey B (1988) Analysis of acyl-coenzyme A esters in biological samples. Methods Enzymol 166:55–70PubMed Corkey B (1988) Analysis of acyl-coenzyme A esters in biological samples. Methods Enzymol 166:55–70PubMed
77.
Zurück zum Zitat Deeney JT, Tornheim K, Korchak HM, Prentki M, Corkey BE (1992) Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic β-cells. J Biol Chem 267:19840–19845PubMed Deeney JT, Tornheim K, Korchak HM, Prentki M, Corkey BE (1992) Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic β-cells. J Biol Chem 267:19840–19845PubMed
78.
Zurück zum Zitat Warnotte C, Gilon P, Nenquin M, Henquin J-C (1994) Mechanisms of the stimulation of insulin release by saturated fatty acids. Astudy of palmiate in mouse β-cells. Diabetes 43:703–711 Warnotte C, Gilon P, Nenquin M, Henquin J-C (1994) Mechanisms of the stimulation of insulin release by saturated fatty acids. Astudy of palmiate in mouse β-cells. Diabetes 43:703–711
79.
Zurück zum Zitat Warnotte C, Nenquin M, Henquin JC (1999) Unbound rather than total concentration and saturation rather than unsaturation determine the potency of fatty acids on insulin secretion. Mol Cell Endocrinol 153:147–153PubMed Warnotte C, Nenquin M, Henquin JC (1999) Unbound rather than total concentration and saturation rather than unsaturation determine the potency of fatty acids on insulin secretion. Mol Cell Endocrinol 153:147–153PubMed
80.
Zurück zum Zitat Gravena C, Mathias PC, Ashcroft SJ (2002) Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol 173:73–80PubMed Gravena C, Mathias PC, Ashcroft SJ (2002) Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol 173:73–80PubMed
81.
Zurück zum Zitat Crespin SR, Greenough WB 3rd, Steinberg D (1969) Stimulation of insulin secretion by infusion of free fatty acids. J Clin Invest 48:1934–1943PubMed Crespin SR, Greenough WB 3rd, Steinberg D (1969) Stimulation of insulin secretion by infusion of free fatty acids. J Clin Invest 48:1934–1943PubMed
82.
Zurück zum Zitat Paolisso G, Gambardella A, Amato L et al. (1995) Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 38:1295–1299PubMed Paolisso G, Gambardella A, Amato L et al. (1995) Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 38:1295–1299PubMed
83.
Zurück zum Zitat Tamarit-Rodriguez J, Vara E, Tamarit J (1984) Starvation-induced changes of palmitate metabolism and insulin secretion in isolated rat islets stimulated by glucose. Biochem J 221:317–324PubMed Tamarit-Rodriguez J, Vara E, Tamarit J (1984) Starvation-induced changes of palmitate metabolism and insulin secretion in isolated rat islets stimulated by glucose. Biochem J 221:317–324PubMed
84.
Zurück zum Zitat Vara E, Fernandez-Martin O, Garcia C, Tamarit-Rodriguez J (1988) Palmitate dependence of insulin secretion, "de novo" phospholipid synthesis and45Ca2+-turnover in glucose stimulated rat islets. Diabetologia 31:687–693PubMed Vara E, Fernandez-Martin O, Garcia C, Tamarit-Rodriguez J (1988) Palmitate dependence of insulin secretion, "de novo" phospholipid synthesis and45Ca2+-turnover in glucose stimulated rat islets. Diabetologia 31:687–693PubMed
85.
Zurück zum Zitat Thams P, Capito K (2001) Differential mechanisms of glucose and palmitate in augmentation of insulin secretion in mouse pancreatic islets. Diabetologia 44:738–746CrossRefPubMed Thams P, Capito K (2001) Differential mechanisms of glucose and palmitate in augmentation of insulin secretion in mouse pancreatic islets. Diabetologia 44:738–746CrossRefPubMed
86.
Zurück zum Zitat Dobbins RL, Chester MW, Stevenson BE, Daniels MB, Stein DT, McGarry JD (1998) A fatty acid-dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. J Clin Invest 101:2370–2376PubMed Dobbins RL, Chester MW, Stevenson BE, Daniels MB, Stein DT, McGarry JD (1998) A fatty acid-dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. J Clin Invest 101:2370–2376PubMed
87.
Zurück zum Zitat Ramanadham S, Hsu F, Zhang S, Bohrer A, Ma Z, Turk J (2000) Electrospray ionization mass spectrometric analyses of phospholipids from INS-1 insulinoma cells: comparison to pancreatic islets and effects of fatty acid supplementation on phospholipid composition and insulin secretion. Biochim Biophys Acta 1484:251–266CrossRefPubMed Ramanadham S, Hsu F, Zhang S, Bohrer A, Ma Z, Turk J (2000) Electrospray ionization mass spectrometric analyses of phospholipids from INS-1 insulinoma cells: comparison to pancreatic islets and effects of fatty acid supplementation on phospholipid composition and insulin secretion. Biochim Biophys Acta 1484:251–266CrossRefPubMed
88.
Zurück zum Zitat Ramanadham S, Hsu FF, Bohrer A, Ma Z, Turk J (1999) Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-induced arachidonic acid release in pancreatic islets and insulinoma cells. J Biol Chem 274:13915–13927CrossRefPubMed Ramanadham S, Hsu FF, Bohrer A, Ma Z, Turk J (1999) Studies of the role of group VI phospholipase A2 in fatty acid incorporation, phospholipid remodeling, lysophosphatidylcholine generation, and secretagogue-induced arachidonic acid release in pancreatic islets and insulinoma cells. J Biol Chem 274:13915–13927CrossRefPubMed
89.
Zurück zum Zitat Opara EC, Garfinkel M, Hubbard VS, Burch WM, Akwari OE (1994) Effect of fatty acids on insulin release: role of chain length and degree of unsaturation. Am J Physiol 266:E635–E639PubMed Opara EC, Garfinkel M, Hubbard VS, Burch WM, Akwari OE (1994) Effect of fatty acids on insulin release: role of chain length and degree of unsaturation. Am J Physiol 266:E635–E639PubMed
90.
Zurück zum Zitat Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD (1997) The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100:398–403PubMed Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD (1997) The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation. J Clin Invest 100:398–403PubMed
91.
Zurück zum Zitat Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT (1998) Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 47:1613–1618PubMed Dobbins RL, Chester MW, Daniels MB, McGarry JD, Stein DT (1998) Circulating fatty acids are essential for efficient glucose-stimulated insulin secretion after prolonged fasting in humans. Diabetes 47:1613–1618PubMed
92.
Zurück zum Zitat Stein DT, Esser V, Stevenson BE et al. (1996) Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 97:2728–2735PubMed Stein DT, Esser V, Stevenson BE et al. (1996) Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest 97:2728–2735PubMed
93.
Zurück zum Zitat Roduit R, Masiello P, Wang SP, Li H, Mitchell GA, Prentki M (2001) A role for hormone-sensitive lipase in glucose-stimulated insulin secretion: a study in hormone-sensitive lipase-deficient mice. Diabetes 50:1970–1975PubMed Roduit R, Masiello P, Wang SP, Li H, Mitchell GA, Prentki M (2001) A role for hormone-sensitive lipase in glucose-stimulated insulin secretion: a study in hormone-sensitive lipase-deficient mice. Diabetes 50:1970–1975PubMed
94.
Zurück zum Zitat Yajima H, Komatsu M, Yamada S et al. (2000) Cerulenin, an inhibitor of protein acylation, selectively attenuates nutrient stimulation of insulin release: a study in rat pancreatic islets. Diabetes 49:712–717PubMed Yajima H, Komatsu M, Yamada S et al. (2000) Cerulenin, an inhibitor of protein acylation, selectively attenuates nutrient stimulation of insulin release: a study in rat pancreatic islets. Diabetes 49:712–717PubMed
95.
Zurück zum Zitat Sako Y, Grill VE (1990) A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127:1580–1589PubMed Sako Y, Grill VE (1990) A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127:1580–1589PubMed
96.
Zurück zum Zitat Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF (1999) Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol 276:E1055–E1066PubMed Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF (1999) Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol 276:E1055–E1066PubMed
97.
Zurück zum Zitat Dobbins RL, Szczepaniak LS, Myhill J, Tamura Y, Uchino H, Giacca A, McGarry JD (2002) The composition of dietary fat directly influences glucose-stimulated insulin secretion in rats. Diabetes 51:1825–1833PubMed Dobbins RL, Szczepaniak LS, Myhill J, Tamura Y, Uchino H, Giacca A, McGarry JD (2002) The composition of dietary fat directly influences glucose-stimulated insulin secretion in rats. Diabetes 51:1825–1833PubMed
98.
Zurück zum Zitat Marshall JA, Bessesen DH, Hamman RF (1997) High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia 40:430–438CrossRefPubMed Marshall JA, Bessesen DH, Hamman RF (1997) High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia 40:430–438CrossRefPubMed
99.
Zurück zum Zitat Majumdar S, Rossi MW, Fujiki T et al. (1991) Protein kinase C isotypes and signaling in neutrophils. Differential substrate specificities of a translocatable calcium- and phospholipid-dependent beta-protein kinase C and a phospholipid-dependent protein kinase which is inhibited by long chain fatty acyl coenzyme A. J Biol Chem 266:9285–9294PubMed Majumdar S, Rossi MW, Fujiki T et al. (1991) Protein kinase C isotypes and signaling in neutrophils. Differential substrate specificities of a translocatable calcium- and phospholipid-dependent beta-protein kinase C and a phospholipid-dependent protein kinase which is inhibited by long chain fatty acyl coenzyme A. J Biol Chem 266:9285–9294PubMed
100.
Zurück zum Zitat Woldegiorgis G, Yousufzai SY, Shrago E (1982) Studies on the interaction of palmitoyl coenzyme A with the adenine nucleotide translocase. J Biol Chem 257:14783–14787PubMed Woldegiorgis G, Yousufzai SY, Shrago E (1982) Studies on the interaction of palmitoyl coenzyme A with the adenine nucleotide translocase. J Biol Chem 257:14783–14787PubMed
101.
Zurück zum Zitat Tippett PS, Neet KE (1982) Specific inhibition of glucokinase by long chain acyl coenzymes A below the critical micelle concentration. J Biol Chem 257:12839–12845PubMed Tippett PS, Neet KE (1982) Specific inhibition of glucokinase by long chain acyl coenzymes A below the critical micelle concentration. J Biol Chem 257:12839–12845PubMed
102.
Zurück zum Zitat Brun T, Assimacopoulos-Jeannet F, Corkey BE, Prentki M (1997) Long-chain fatty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic β-cell line INS-1. Diabetes 46:393–400PubMed Brun T, Assimacopoulos-Jeannet F, Corkey BE, Prentki M (1997) Long-chain fatty acids inhibit acetyl-CoA carboxylase gene expression in the pancreatic β-cell line INS-1. Diabetes 46:393–400PubMed
103.
Zurück zum Zitat Assimacopoulos-Jeannet F, Thumelin S, Roche E, Esser V, McGarry JD, Prentki M (1997) Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1. J Biol Chem 272:1659–1664CrossRefPubMed Assimacopoulos-Jeannet F, Thumelin S, Roche E, Esser V, McGarry JD, Prentki M (1997) Fatty acids rapidly induce the carnitine palmitoyltransferase I gene in the pancreatic beta-cell line INS-1. J Biol Chem 272:1659–1664CrossRefPubMed
104.
Zurück zum Zitat Liu YQ, Tornheim K, Leahy JL (1998) Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content. J Clin Invest 101:1870–1875PubMed Liu YQ, Tornheim K, Leahy JL (1998) Fatty acid-induced beta cell hypersensitivity to glucose. Increased phosphofructokinase activity and lowered glucose-6-phosphate content. J Clin Invest 101:1870–1875PubMed
105.
Zurück zum Zitat Liu YQ, Tornheim K, Leahy JL (1998) Shared biochemical properties of glucotoxicity and lipotoxicity in islets decrease citrate synthase activity and increase phosphofructokinase activity. Diabetes 47:1889–1893PubMed Liu YQ, Tornheim K, Leahy JL (1998) Shared biochemical properties of glucotoxicity and lipotoxicity in islets decrease citrate synthase activity and increase phosphofructokinase activity. Diabetes 47:1889–1893PubMed
106.
Zurück zum Zitat Bollheimer LC, Skelly RH, Chester MW, McGarry JD, Rhodes CJ (1998) Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest 101:1094–1101PubMed Bollheimer LC, Skelly RH, Chester MW, McGarry JD, Rhodes CJ (1998) Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest 101:1094–1101PubMed
107.
Zurück zum Zitat Gremlich S, Bonny C, Waeber G, Thorens B (1997) Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 272:30261–30269CrossRefPubMed Gremlich S, Bonny C, Waeber G, Thorens B (1997) Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem 272:30261–30269CrossRefPubMed
108.
Zurück zum Zitat Bjorklund A, Yaney G, McGarry JD, Weir G (1997) Fatty acids and β-cell function. Diabetologia 40:B21–B26CrossRefPubMed Bjorklund A, Yaney G, McGarry JD, Weir G (1997) Fatty acids and β-cell function. Diabetologia 40:B21–B26CrossRefPubMed
109.
Zurück zum Zitat Mulder H, Holst LS, Svensson H et al. (1999) Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in β-cells. Diabetes 48:228–232PubMed Mulder H, Holst LS, Svensson H et al. (1999) Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in β-cells. Diabetes 48:228–232PubMed
110.
Zurück zum Zitat Winzell MS, Svensson H, Arner P, Ahren B, Holm C (2001) The expression of hormone-sensitive lipase in clonal β-cells and rat islets is induced by long-term exposure to high glucose. Diabetes 50:2225–2230PubMed Winzell MS, Svensson H, Arner P, Ahren B, Holm C (2001) The expression of hormone-sensitive lipase in clonal β-cells and rat islets is induced by long-term exposure to high glucose. Diabetes 50:2225–2230PubMed
111.
Zurück zum Zitat Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393CrossRefPubMed Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393CrossRefPubMed
112.
Zurück zum Zitat Masiello P, Novelli M, Bombara M et al. (2002) The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metab Clin Exp 51:110–114CrossRefPubMed Masiello P, Novelli M, Bombara M et al. (2002) The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metab Clin Exp 51:110–114CrossRefPubMed
113.
Zurück zum Zitat Yaney GC, Civelek VN, Richard AM et al. (2001) Glucagon-like peptide 1 stimulates lipolysis in clonal pancreatic β-cells (HIT). Diabetes 50:56–62PubMed Yaney GC, Civelek VN, Richard AM et al. (2001) Glucagon-like peptide 1 stimulates lipolysis in clonal pancreatic β-cells (HIT). Diabetes 50:56–62PubMed
114.
Zurück zum Zitat Cunningham BA, Richard AM, Dillon JS et al. (2003) Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets. Biochem J 369:173–178CrossRefPubMed Cunningham BA, Richard AM, Dillon JS et al. (2003) Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets. Biochem J 369:173–178CrossRefPubMed
115.
Zurück zum Zitat Haemmerle G, Zimmermann R, Hayn M et al. (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–4815CrossRefPubMed Haemmerle G, Zimmermann R, Hayn M et al. (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–4815CrossRefPubMed
116.
Zurück zum Zitat Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323:1–12PubMed Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323:1–12PubMed
117.
Zurück zum Zitat Metz SA, Dunlop M (1990) Stimulation of insulin release by phospholipase D. A potential role for endogenous phosphatidic acid in pancreatic islet function. Biochem J 270:427–435PubMed Metz SA, Dunlop M (1990) Stimulation of insulin release by phospholipase D. A potential role for endogenous phosphatidic acid in pancreatic islet function. Biochem J 270:427–435PubMed
118.
Zurück zum Zitat Hodgkin MN, Pettitt TR, Martin A, Michell RH, Pemberton AJ, Wakelam MJ (1998) Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem Sci (TIBS) 23:200–204CrossRef Hodgkin MN, Pettitt TR, Martin A, Michell RH, Pemberton AJ, Wakelam MJ (1998) Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem Sci (TIBS) 23:200–204CrossRef
119.
Zurück zum Zitat Goetzl EJ (2001) Pleiotypic mechanisms of cellular responses to biologically active lysophospholipids. Prostaglandins Other Lipid Mediat 64:11–20CrossRefPubMed Goetzl EJ (2001) Pleiotypic mechanisms of cellular responses to biologically active lysophospholipids. Prostaglandins Other Lipid Mediat 64:11–20CrossRefPubMed
120.
Zurück zum Zitat Eddlestone GT (1995) ATP-sensitive K channel modulation by products of PLA2 action in the insulin-secreting HIT cell line. Am J Physiol 268:C181–C90PubMed Eddlestone GT (1995) ATP-sensitive K channel modulation by products of PLA2 action in the insulin-secreting HIT cell line. Am J Physiol 268:C181–C90PubMed
121.
Zurück zum Zitat Baukrowitz T, Fakler B (2000) K(ATP) channels: linker between phospholipid metabolism and excitability. Biochem Pharmacol 60:735–740CrossRefPubMed Baukrowitz T, Fakler B (2000) K(ATP) channels: linker between phospholipid metabolism and excitability. Biochem Pharmacol 60:735–740CrossRefPubMed
122.
Zurück zum Zitat Severson DL, Hurley B (1984) Inhibition of the hormone-sensitive lipase in adipose tissue by long-chain fatty acyl coenzyme A. Lipids 19:134–138PubMed Severson DL, Hurley B (1984) Inhibition of the hormone-sensitive lipase in adipose tissue by long-chain fatty acyl coenzyme A. Lipids 19:134–138PubMed
123.
Zurück zum Zitat Kindmark H, Kohler M, Efendic S, Rorsman P, Larsson O, Berggren PO (1992) Protein kinase C activity affects glucose-induced oscillations in cytoplasmic free Ca2+ in the pancreatic β-cell. FEBS Lett 303:85–90CrossRefPubMed Kindmark H, Kohler M, Efendic S, Rorsman P, Larsson O, Berggren PO (1992) Protein kinase C activity affects glucose-induced oscillations in cytoplasmic free Ca2+ in the pancreatic β-cell. FEBS Lett 303:85–90CrossRefPubMed
124.
Zurück zum Zitat Lawrie AM, Toescu EC, Gallacher DV (1993) Two different spatiotemporal patterns for Ca2+ oscillations in pancreatic acinar cells: evidence of a role for protein kinase C in Ins(1,4,5)P3-mediated Ca2+ signalling. Cell Calcium 14:698–710PubMed Lawrie AM, Toescu EC, Gallacher DV (1993) Two different spatiotemporal patterns for Ca2+ oscillations in pancreatic acinar cells: evidence of a role for protein kinase C in Ins(1,4,5)P3-mediated Ca2+ signalling. Cell Calcium 14:698–710PubMed
125.
Zurück zum Zitat Martin F, Reig JA, Soria B (1995) Secretagogue-induced [Ca2+]i changes in single rat pancreatic islets and correlation with simultaneously measured insulin release. J Mol Endocrinol 15:177–185PubMed Martin F, Reig JA, Soria B (1995) Secretagogue-induced [Ca2+]i changes in single rat pancreatic islets and correlation with simultaneously measured insulin release. J Mol Endocrinol 15:177–185PubMed
126.
Zurück zum Zitat Nakazaki M, Ishihara H, Kakei M et al. (1998) Repetitive mitochondrial Ca2+ signals synchronize with cytosolic Ca2+ oscillations in the pancreatic β-cell line, MIN6. Diabetologia 41:279–286CrossRefPubMed Nakazaki M, Ishihara H, Kakei M et al. (1998) Repetitive mitochondrial Ca2+ signals synchronize with cytosolic Ca2+ oscillations in the pancreatic β-cell line, MIN6. Diabetologia 41:279–286CrossRefPubMed
127.
Zurück zum Zitat Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482PubMed Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482PubMed
128.
Zurück zum Zitat Satin LS, Tavalin SJ, Kinard TA, Teague J (1995) Contribution of L- and non-L-type calcium channels to voltage-gated calcium current and glucose-dependent insulin secretion in HIT-T15 cells. Endocrinology 136:4589–4601PubMed Satin LS, Tavalin SJ, Kinard TA, Teague J (1995) Contribution of L- and non-L-type calcium channels to voltage-gated calcium current and glucose-dependent insulin secretion in HIT-T15 cells. Endocrinology 136:4589–4601PubMed
129.
Zurück zum Zitat Ihara Y, Yamada Y, Fujii Y et al. (1995) Molecular diversity and functional characterization of voltage-dependent calcium channels (CACN4) expressed in pancreatic beta-cells. Mol Endocrinol 9:121–130PubMed Ihara Y, Yamada Y, Fujii Y et al. (1995) Molecular diversity and functional characterization of voltage-dependent calcium channels (CACN4) expressed in pancreatic beta-cells. Mol Endocrinol 9:121–130PubMed
130.
Zurück zum Zitat Sollner TH, Rothman JE (1996) Molecular machinery mediating vesicle budding, docking and fusion. Experientia 52:1021–1025PubMed Sollner TH, Rothman JE (1996) Molecular machinery mediating vesicle budding, docking and fusion. Experientia 52:1021–1025PubMed
131.
Zurück zum Zitat Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77PubMed Rorsman P, Eliasson L, Renstrom E, Gromada J, Barg S, Gopel S (2000) The cell physiology of biphasic insulin secretion. News Physiol Sci 15:72–77PubMed
132.
Zurück zum Zitat Daniel S, Noda M, Straub SG, Sharp GWG (1999) Identification of the docked granule pool responsible for the first phase of glucose-stimulted insulin secretion. Diabetes 48:1686–1690PubMed Daniel S, Noda M, Straub SG, Sharp GWG (1999) Identification of the docked granule pool responsible for the first phase of glucose-stimulted insulin secretion. Diabetes 48:1686–1690PubMed
133.
Zurück zum Zitat Tsubamoto Y, Eto K, Noda M et al. (2001) Hexamminecobalt(III) chloride inhibits glucose-induced insulin secretion at the exocytotic process. J Biol Chem 276:2979–2985CrossRefPubMed Tsubamoto Y, Eto K, Noda M et al. (2001) Hexamminecobalt(III) chloride inhibits glucose-induced insulin secretion at the exocytotic process. J Biol Chem 276:2979–2985CrossRefPubMed
134.
Zurück zum Zitat Newton AC, Johnson JE (1998) Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta 1376:155–172CrossRefPubMed Newton AC, Johnson JE (1998) Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim Biophys Acta 1376:155–172CrossRefPubMed
135.
Zurück zum Zitat Ford DA, Horner CC, Gross RW (1998) Protein kinase C acylation by palmitoyl coenzyme A facilitates its translocation to membranes. Biochemistry 37:11953–11961CrossRefPubMed Ford DA, Horner CC, Gross RW (1998) Protein kinase C acylation by palmitoyl coenzyme A facilitates its translocation to membranes. Biochemistry 37:11953–11961CrossRefPubMed
136.
137.
Zurück zum Zitat Knutson KL, Hoenig M (1994) Identification and subcellular characterization of protein kinase-C isoforms in insulinoma beta-cells and whole islets. Endocrinology 135:881–886PubMed Knutson KL, Hoenig M (1994) Identification and subcellular characterization of protein kinase-C isoforms in insulinoma beta-cells and whole islets. Endocrinology 135:881–886PubMed
138.
Zurück zum Zitat Tian YM, Urquidi V, Ashcroft SJ (1996) Protein kinase C in β-cells: expression of multiple isoforms and involvement in cholinergic stimulation of insulin secretion. Mol Cell Endocrinol 119:185–193CrossRefPubMed Tian YM, Urquidi V, Ashcroft SJ (1996) Protein kinase C in β-cells: expression of multiple isoforms and involvement in cholinergic stimulation of insulin secretion. Mol Cell Endocrinol 119:185–193CrossRefPubMed
139.
Zurück zum Zitat Zawalich WS, Zawalich KC (1996) Regulation of insulin secretion by phospholipase C. Am J Physiol 271:E409–E416PubMed Zawalich WS, Zawalich KC (1996) Regulation of insulin secretion by phospholipase C. Am J Physiol 271:E409–E416PubMed
140.
Zurück zum Zitat Zawalich WS, Bonnet-Eymard M, Zawalich KC, Yaney GC (1998) Chronic exposure to TPA depletes PKC-α and augments Ca-dependent insulin secretion from cultured rat islets. Am J Physiol 274:C1388–C1396PubMed Zawalich WS, Bonnet-Eymard M, Zawalich KC, Yaney GC (1998) Chronic exposure to TPA depletes PKC-α and augments Ca-dependent insulin secretion from cultured rat islets. Am J Physiol 274:C1388–C1396PubMed
141.
Zurück zum Zitat Deeney JT, Cunningham BA, Chheda S et al. (1996) Reversible Ca2+-dependent translocation of protein kinase C and glucose-induced insulin release. J Biol Chem 271:18154–18160CrossRefPubMed Deeney JT, Cunningham BA, Chheda S et al. (1996) Reversible Ca2+-dependent translocation of protein kinase C and glucose-induced insulin release. J Biol Chem 271:18154–18160CrossRefPubMed
142.
Zurück zum Zitat Wolf BA, Easom RA, McDaniel ML, Turk J (1990) Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans. J Clin Invest 85:482–490PubMed Wolf BA, Easom RA, McDaniel ML, Turk J (1990) Diacylglycerol synthesis de novo from glucose by pancreatic islets isolated from rats and humans. J Clin Invest 85:482–490PubMed
143.
Zurück zum Zitat Ganesan S, Calle R, Zawalich K, Smallwood JI, Zawalich WS, Rasmussen H (1990) Glucose-induced translocation of protein kinase C in rat pancreatic islets. Proc Natl Acad Sci USA 87:9893–9897PubMed Ganesan S, Calle R, Zawalich K, Smallwood JI, Zawalich WS, Rasmussen H (1990) Glucose-induced translocation of protein kinase C in rat pancreatic islets. Proc Natl Acad Sci USA 87:9893–9897PubMed
144.
Zurück zum Zitat Ganesan S, Calle R, Zawalich K et al. (1992) Immunocytochemical localization of alpha-protein kinase C in rat pancreatic β-cells during glucose-induced insulin secretion. J Cell Biol 119:313–324PubMed Ganesan S, Calle R, Zawalich K et al. (1992) Immunocytochemical localization of alpha-protein kinase C in rat pancreatic β-cells during glucose-induced insulin secretion. J Cell Biol 119:313–324PubMed
145.
Zurück zum Zitat Yedovitzky M, Mochly-Rosen D, Johnson JA et al. (1997) Translocation inhibitors define specificity of protein kinase C isoenzymes in pancreatic β-cells. J Biol Chem 272:1417–1420CrossRefPubMed Yedovitzky M, Mochly-Rosen D, Johnson JA et al. (1997) Translocation inhibitors define specificity of protein kinase C isoenzymes in pancreatic β-cells. J Biol Chem 272:1417–1420CrossRefPubMed
146.
Zurück zum Zitat Yaney GC, Fairbanks JM, Deeney JT, Korchak HM, Tornheim K, Corkey BE (2002) Potentiation of insulin secretion by phorbol esters is mediated by PKC-α and nPKC isoforms. Am J Physiol 283:E880–E888 Yaney GC, Fairbanks JM, Deeney JT, Korchak HM, Tornheim K, Corkey BE (2002) Potentiation of insulin secretion by phorbol esters is mediated by PKC-α and nPKC isoforms. Am J Physiol 283:E880–E888
147.
Zurück zum Zitat Littman ED, Pitchumoni S, Garfinkel MR, Opara EC (2000) Role of protein kinase C isoenzymes in fatty acid stimulation of insulin secretion. Pancreas 20:256–263CrossRefPubMed Littman ED, Pitchumoni S, Garfinkel MR, Opara EC (2000) Role of protein kinase C isoenzymes in fatty acid stimulation of insulin secretion. Pancreas 20:256–263CrossRefPubMed
148.
Zurück zum Zitat Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ (1994) Phosphatidic acid activation of protein kinase C-ζ overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304:1001–1008PubMed Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ (1994) Phosphatidic acid activation of protein kinase C-ζ overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304:1001–1008PubMed
149.
Zurück zum Zitat Nakanishi H, Brewer KA, Exton JH (1993) Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 268:13–16PubMed Nakanishi H, Brewer KA, Exton JH (1993) Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 268:13–16PubMed
150.
Zurück zum Zitat Chou MM, Hou W, Johnson J et al. (1998) Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol 8:1069–1077 Chou MM, Hou W, Johnson J et al. (1998) Regulation of protein kinase C ζ by PI 3-kinase and PDK-1. Curr Biol 8:1069–1077
151.
Zurück zum Zitat Khan WA, Blobe G, Halpern A et al. (1993) Selective regulation of protein kinase C isoenzymes by oleic acid in human platelets. J Biol Chem 268:5063–5068PubMed Khan WA, Blobe G, Halpern A et al. (1993) Selective regulation of protein kinase C isoenzymes by oleic acid in human platelets. J Biol Chem 268:5063–5068PubMed
152.
Zurück zum Zitat Shirai Y, Kashiwagi K, Yagi K, Sakai N, Saito N (1998) Distinct effects of fatty acids on translocation of γ- and ε-subspecies of protein kinase C. J Cell Biol 143:511–521PubMed Shirai Y, Kashiwagi K, Yagi K, Sakai N, Saito N (1998) Distinct effects of fatty acids on translocation of γ- and ε-subspecies of protein kinase C. J Cell Biol 143:511–521PubMed
153.
Zurück zum Zitat Gillis KD, Mossner R, Neher E (1996) Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16:1209–1220PubMed Gillis KD, Mossner R, Neher E (1996) Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16:1209–1220PubMed
154.
Zurück zum Zitat Stevens CF, Sullivan JM (1998) Regulation of the readily releasable vesicle pool by protein kinase C. Neuron 21:885–893PubMed Stevens CF, Sullivan JM (1998) Regulation of the readily releasable vesicle pool by protein kinase C. Neuron 21:885–893PubMed
155.
Zurück zum Zitat Chen YA, Duvvuri V, Schulman H, Scheller RH (1999) Calmodulin and protein kinase C increase Ca2+-stimulated secretion by modulating membrane-attached exocytic machinery. J Biol Chem 274:26469–26476CrossRefPubMed Chen YA, Duvvuri V, Schulman H, Scheller RH (1999) Calmodulin and protein kinase C increase Ca2+-stimulated secretion by modulating membrane-attached exocytic machinery. J Biol Chem 274:26469–26476CrossRefPubMed
156.
Zurück zum Zitat Yu W, Niwa T, Fukasawa T et al. (2000) Synergism of protein kinase A, protein kinase C, and myosin light-chain kinase in the secretory cascade of the pancreatic β-cell. Diabetes 49:945–952PubMed Yu W, Niwa T, Fukasawa T et al. (2000) Synergism of protein kinase A, protein kinase C, and myosin light-chain kinase in the secretory cascade of the pancreatic β-cell. Diabetes 49:945–952PubMed
157.
Zurück zum Zitat Hisatomi M, Hidaka H, Niki I (1996) Ca2+/calmodulin and cyclic 3,5′ adenosine monophosphate control movement of secretory granules through protein phosphorylation/dephosphorylation in the pancreatic β-cell. Endocrinology 137:4644–4649PubMed Hisatomi M, Hidaka H, Niki I (1996) Ca2+/calmodulin and cyclic 3,5′ adenosine monophosphate control movement of secretory granules through protein phosphorylation/dephosphorylation in the pancreatic β-cell. Endocrinology 137:4644–4649PubMed
158.
Zurück zum Zitat Tian Y, Laychock SG (2001) Protein kinase C and calcium regulation of adenylyl cyclase in isolated rat pancreatic islets. Diabetes 50:2505–2513PubMed Tian Y, Laychock SG (2001) Protein kinase C and calcium regulation of adenylyl cyclase in isolated rat pancreatic islets. Diabetes 50:2505–2513PubMed
159.
Zurück zum Zitat Sharp GW (1979) The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin release. Diabetologia 16:287–296PubMed Sharp GW (1979) The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin release. Diabetologia 16:287–296PubMed
160.
Zurück zum Zitat Regazzi R, Li G, Ullrich S, Jaggi C, Wollheim CB (1989) Different requirements for protein kinase C activation and Ca2+-independent insulin secretion in response to guanine nucleotides. Endogenously generated diacylglycerol requires elevated Ca2+ for kinase C insertion into membranes. J Biol Chem 264:9939–9944PubMed Regazzi R, Li G, Ullrich S, Jaggi C, Wollheim CB (1989) Different requirements for protein kinase C activation and Ca2+-independent insulin secretion in response to guanine nucleotides. Endogenously generated diacylglycerol requires elevated Ca2+ for kinase C insertion into membranes. J Biol Chem 264:9939–9944PubMed
161.
Zurück zum Zitat Fujita Y, Sasaki T, Fukui K et al. (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 271:7265–7268CrossRefPubMed Fujita Y, Sasaki T, Fukui K et al. (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 271:7265–7268CrossRefPubMed
162.
Zurück zum Zitat Shimazaki Y, Nishiki T, Omori A et al. (1996) Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271:14548–14553CrossRefPubMed Shimazaki Y, Nishiki T, Omori A et al. (1996) Phosphorylation of 25-kDa synaptosome-associated protein. Possible involvement in protein kinase C-mediated regulation of neurotransmitter release. J Biol Chem 271:14548–14553CrossRefPubMed
163.
Zurück zum Zitat Hartwig JH, Thelen M, Rosen A, Jammey PA, Nairn AC, Aderem A (1992) MARCKS is an actin filament crosslinking protein regulated by PKC and calcium-calmodulin. Nature 356:618–622CrossRefPubMed Hartwig JH, Thelen M, Rosen A, Jammey PA, Nairn AC, Aderem A (1992) MARCKS is an actin filament crosslinking protein regulated by PKC and calcium-calmodulin. Nature 356:618–622CrossRefPubMed
164.
Zurück zum Zitat Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363PubMed Vitale ML, Seward EP, Trifaro JM (1995) Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis. Neuron 14:353–363PubMed
165.
Zurück zum Zitat Nishizaki T, Walent JH, Kowalchyk JA, Martin TF (1992) A key role for a 145-kDa cytosolic protein in the stimulation of Ca2+-dependent secretion by protein kinase C. J Biol Chem 267:23972–23981PubMed Nishizaki T, Walent JH, Kowalchyk JA, Martin TF (1992) A key role for a 145-kDa cytosolic protein in the stimulation of Ca2+-dependent secretion by protein kinase C. J Biol Chem 267:23972–23981PubMed
166.
Zurück zum Zitat Wiser O, Trus M, Hernandez A et al. (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci USA 96:248–253CrossRefPubMed Wiser O, Trus M, Hernandez A et al. (1999) The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc Natl Acad Sci USA 96:248–253CrossRefPubMed
167.
Zurück zum Zitat Yang SN, Larsson O, Branstrom R et al. (1999) Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca2+ channels in pancreatic β-cells. Proc Natl Acad Sci USA 96:10164–10169CrossRefPubMed Yang SN, Larsson O, Branstrom R et al. (1999) Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca2+ channels in pancreatic β-cells. Proc Natl Acad Sci USA 96:10164–10169CrossRefPubMed
168.
Zurück zum Zitat Arkhammar P, Juntti BL, Larsson O et al. (1994) Protein kinase C modulates the insulin secretory process by maintaining a proper function of the beta-cell voltage-activated Ca2+ channels. J Biol Chem 269:2743–2749PubMed Arkhammar P, Juntti BL, Larsson O et al. (1994) Protein kinase C modulates the insulin secretory process by maintaining a proper function of the beta-cell voltage-activated Ca2+ channels. J Biol Chem 269:2743–2749PubMed
169.
Zurück zum Zitat Yang J, Tsien RW (1993) Enhancement of N- and L-type calcium channel currents by protein kinase C in frog sympathetic neurons. Neuron 10:127–136PubMed Yang J, Tsien RW (1993) Enhancement of N- and L-type calcium channel currents by protein kinase C in frog sympathetic neurons. Neuron 10:127–136PubMed
170.
Zurück zum Zitat McHugh D, Sharp EM, Scheuer T, Catterall WA (2000) Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain. Proc Natl Acad Sci USA 97:12334–12338CrossRefPubMed McHugh D, Sharp EM, Scheuer T, Catterall WA (2000) Inhibition of cardiac L-type calcium channels by protein kinase C phosphorylation of two sites in the N-terminal domain. Proc Natl Acad Sci USA 97:12334–12338CrossRefPubMed
171.
Zurück zum Zitat Pfanner N, Orci L, Glick BS et al. (1989) Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell 59:95–102PubMed Pfanner N, Orci L, Glick BS et al. (1989) Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae. Cell 59:95–102PubMed
172.
Zurück zum Zitat Pfanner N, Glick BS, Arden SR, Rothman JE (1990) Fatty acylation promotes fusion of transport vesicles with Golgi cisternae. J Cell Biol 110:955–961PubMed Pfanner N, Glick BS, Arden SR, Rothman JE (1990) Fatty acylation promotes fusion of transport vesicles with Golgi cisternae. J Cell Biol 110:955–961PubMed
173.
Zurück zum Zitat Gonelle-Gispert C, Molinete M, Halban PA, Sadoul K (2000) Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells. J Cell Sci 113:3197–3205PubMed Gonelle-Gispert C, Molinete M, Halban PA, Sadoul K (2000) Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells. J Cell Sci 113:3197–3205PubMed
174.
Zurück zum Zitat Vogel K, Cabaniols JP, Roche PA (2000) Targeting of SNAP-25 to membranes is mediated by its association with the target SNARE syntaxin. J Biol Chem 275:2959–2965PubMed Vogel K, Cabaniols JP, Roche PA (2000) Targeting of SNAP-25 to membranes is mediated by its association with the target SNARE syntaxin. J Biol Chem 275:2959–2965PubMed
175.
Zurück zum Zitat Washbourne P, Cansino V, Mathews JR, Graham M, Burgoyne RD, Wilson MC (2001) Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting. Biochem J 357:625–634CrossRefPubMed Washbourne P, Cansino V, Mathews JR, Graham M, Burgoyne RD, Wilson MC (2001) Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting. Biochem J 357:625–634CrossRefPubMed
176.
Zurück zum Zitat Gonzalo S, Linder ME (1998) SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 9:585–597PubMed Gonzalo S, Linder ME (1998) SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 9:585–597PubMed
177.
Zurück zum Zitat Veit M, Becher A, Ahnert-Hilger G (2000) Synaptobrevin 2 is palmitoylated in synaptic vesicles prepared from adult, but not from embryonic brain. Mol Cell Neurosci 15:408–416CrossRefPubMed Veit M, Becher A, Ahnert-Hilger G (2000) Synaptobrevin 2 is palmitoylated in synaptic vesicles prepared from adult, but not from embryonic brain. Mol Cell Neurosci 15:408–416CrossRefPubMed
178.
Zurück zum Zitat Veit M, Sollner TH, Rothman JE (1996) Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett 385:119–123CrossRefPubMed Veit M, Sollner TH, Rothman JE (1996) Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25. FEBS Lett 385:119–123CrossRefPubMed
179.
Zurück zum Zitat Chien AJ, Gao T, Perez-Reyes E, Hosey MM (1998) Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the β2a subunit. J Biol Chem 273:23590–23597CrossRefPubMed Chien AJ, Gao T, Perez-Reyes E, Hosey MM (1998) Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the β2a subunit. J Biol Chem 273:23590–23597CrossRefPubMed
180.
Zurück zum Zitat Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481PubMed Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481PubMed
181.
Zurück zum Zitat Alemzadeh R, Langley G, Upchurch L, Smith P, Slonim AE (1998) Beneficial effect of diazoxide in obese hyperinsulinemic adults. J Clin Endocrinol Metab 83:1911–1915 Alemzadeh R, Langley G, Upchurch L, Smith P, Slonim AE (1998) Beneficial effect of diazoxide in obese hyperinsulinemic adults. J Clin Endocrinol Metab 83:1911–1915
Metadaten
Titel
Fatty acid metabolism and insulin secretion in pancreatic beta cells
verfasst von
G. C. Yaney
Dr. B. E. Corkey
Publikationsdatum
01.10.2003
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 10/2003
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-003-1207-4

Weitere Artikel der Ausgabe 10/2003

Diabetologia 10/2003 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.