Skip to main content
Erschienen in: Diabetologia 3/2004

01.03.2004 | Review

Incretins, insulin secretion and Type 2 diabetes mellitus

verfasst von: T. Vilsbøll, J. J. Holst

Erschienen in: Diabetologia | Ausgabe 3/2004

Einloggen, um Zugang zu erhalten

Abstract

When glucose is taken orally, insulin secretion is stimulated much more than it is when glucose is infused intravenously so as to result in similar glucose concentrations. This effect, which is called the incretin effect and is estimated to be responsible for 50 to 70% of the insulin response to glucose, is caused mainly by the two intestinal insulin-stimulating hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Their contributions have been confirmed in mimicry experiments, in experiments with antagonists of their actions, and in experiments where the genes encoding their receptors have been deleted. In patients with Type 2 diabetes, the incretin effect is either greatly impaired or absent, and it is assumed that this could contribute to the inability of these patients to adjust their insulin secretion to their needs. In studies of the mechanism of the impaired incretin effect in Type 2 diabetic patients, it has been found that the secretion of GIP is generally normal, whereas the secretion of GLP-1 is reduced, presumably as a consequence of the diabetic state. It might be of even greater importance that the effect of GLP-1 is preserved whereas the effect of GIP is severely impaired. The impaired GIP effect seems to have a genetic background, but could be aggravated by the diabetic state. The preserved effect of GLP-1 has inspired attempts to treat Type 2 diabetes with GLP-1 or analogues thereof, and intravenous GLP-1 administration has been shown to be able to near-normalize both fasting and postprandial glycaemic concentrations in the patients, perhaps because the treatment compensates for both the impaired secretion of GLP-1 and the impaired action of GIP. Several GLP-1 analogues are currently in clinical development and the reported results are, so far, encouraging.
Literatur
1.
Zurück zum Zitat McIntyre N, Holdsworth CD, Turner DS (1965) Intestinal factors in the control of insulin secretion. J Clin Endocrinol Metab 25:1317–1324CrossRefPubMed McIntyre N, Holdsworth CD, Turner DS (1965) Intestinal factors in the control of insulin secretion. J Clin Endocrinol Metab 25:1317–1324CrossRefPubMed
2.
Zurück zum Zitat Perley M, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 46:1954–1962CrossRefPubMedPubMedCentral Perley M, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Invest 46:1954–1962CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Nauck MA, Homberger E, Siegel, Allen RC, Eaton RP, Ebert R et al. (1986) Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63:492–498CrossRefPubMed Nauck MA, Homberger E, Siegel, Allen RC, Eaton RP, Ebert R et al. (1986) Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63:492–498CrossRefPubMed
4.
Zurück zum Zitat Madsbad S, Kehlet H, Hilsted J, Tronier B (1983) Discrepancy between plasma C-peptide and insulin response to oral and intravenous glucose. Diabetes 32:436–438CrossRefPubMed Madsbad S, Kehlet H, Hilsted J, Tronier B (1983) Discrepancy between plasma C-peptide and insulin response to oral and intravenous glucose. Diabetes 32:436–438CrossRefPubMed
5.
Zurück zum Zitat Holst JJ, Orskov C. Incretin hormones—an update (2001) Scand J Clin Lab Invest 234 [Suppl]:75–85 Holst JJ, Orskov C. Incretin hormones—an update (2001) Scand J Clin Lab Invest 234 [Suppl]:75–85
6.
Zurück zum Zitat Nauck M, Stockmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52CrossRefPubMed Nauck M, Stockmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52CrossRefPubMed
7.
Zurück zum Zitat Tronier B, Dejgaard A, Andersen T, Madsbad S (1985) Absence of incretin efect in obese type 2 and diminished effect in lean type 2 and obese subjects. Diab Res Clin Pract [Suppl 1]:S568 (abstract) Tronier B, Dejgaard A, Andersen T, Madsbad S (1985) Absence of incretin efect in obese type 2 and diminished effect in lean type 2 and obese subjects. Diab Res Clin Pract [Suppl 1]:S568 (abstract)
8.
Zurück zum Zitat Fehmann HC, Goke R, Goke B (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 16:390–410CrossRefPubMed Fehmann HC, Goke R, Goke B (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 16:390–410CrossRefPubMed
9.
Zurück zum Zitat Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, Takahashi H et al. (1987) Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci USA 84:7005–7008CrossRefPubMedPubMedCentral Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, Takahashi H et al. (1987) Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci USA 84:7005–7008CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI (1993) Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 133:2861–2870PubMed Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI (1993) Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 133:2861–2870PubMed
12.
Zurück zum Zitat Mortensen K, Petersen LL, Orskov C (2000) Colocalization of GLP-1 and GIP in human and porcine intestine. Ann NY Acad Sci 921:469–472CrossRefPubMed Mortensen K, Petersen LL, Orskov C (2000) Colocalization of GLP-1 and GIP in human and porcine intestine. Ann NY Acad Sci 921:469–472CrossRefPubMed
13.
Zurück zum Zitat Pederson RA (1994) Gastric inhibitory polypeptide. In: Walsh JH, Dockray GJ (eds) Gut peptides: biochemistry and physiology. Raven Press, New York, pp 217–260 Pederson RA (1994) Gastric inhibitory polypeptide. In: Walsh JH, Dockray GJ (eds) Gut peptides: biochemistry and physiology. Raven Press, New York, pp 217–260
14.
Zurück zum Zitat Ding WG, Renstrom E, Rorsman P, Buschard K, Gromada J (1997) Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes 46:792–800CrossRefPubMed Ding WG, Renstrom E, Rorsman P, Buschard K, Gromada J (1997) Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes 46:792–800CrossRefPubMed
15.
Zurück zum Zitat Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B et al. (2003) International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55:167–194CrossRefPubMed Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B et al. (2003) International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55:167–194CrossRefPubMed
16.
Zurück zum Zitat Ehses JA, Pelech SL, Pederson RA, McIntosh CH (2002) Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 277:37088–37097CrossRefPubMed Ehses JA, Pelech SL, Pederson RA, McIntosh CH (2002) Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 277:37088–37097CrossRefPubMed
17.
Zurück zum Zitat Ehses JA, Lee SS, Pederson RA, McIntosh CH (2003) A new pathway fpr glucose-dependent insulinotropic polypeptiude (GIP) receptor signaling: evidence for the involvement of phospholipase A2 in the GIP stimulated insulin secretion. J Biol Chem 276:23667–23673CrossRef Ehses JA, Lee SS, Pederson RA, McIntosh CH (2003) A new pathway fpr glucose-dependent insulinotropic polypeptiude (GIP) receptor signaling: evidence for the involvement of phospholipase A2 in the GIP stimulated insulin secretion. J Biol Chem 276:23667–23673CrossRef
18.
Zurück zum Zitat Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D (2001) Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15:1559–1570PubMed Trumper A, Trumper K, Trusheim H, Arnold R, Goke B, Horsch D (2001) Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15:1559–1570PubMed
19.
Zurück zum Zitat Dupre J, Ross SA, Watson D, Brown JC (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37:826–828CrossRefPubMed Dupre J, Ross SA, Watson D, Brown JC (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37:826–828CrossRefPubMed
20.
Zurück zum Zitat Andersen DK, Elahi D, Brown JC, Tobin JD, Andres R (1978) Oral glucose augmentation of insulin secretion: interactions of gastric inhibitory polypeptide with ambient glucose and insuln levels. J Clin Invest 49:152–161CrossRef Andersen DK, Elahi D, Brown JC, Tobin JD, Andres R (1978) Oral glucose augmentation of insulin secretion: interactions of gastric inhibitory polypeptide with ambient glucose and insuln levels. J Clin Invest 49:152–161CrossRef
21.
Zurück zum Zitat Ebert R, Creutzfeldt W (1982) Influence of gastric inhibitory polypeptide antiserum on glucose-induced insulin secretion in rats. Endocrinology 111:1601–1606CrossRefPubMed Ebert R, Creutzfeldt W (1982) Influence of gastric inhibitory polypeptide antiserum on glucose-induced insulin secretion in rats. Endocrinology 111:1601–1606CrossRefPubMed
22.
Zurück zum Zitat Lauritsen KB, Holst JJ, Moody AJ (1981) Depression of insulin release by anti-GIP serum after oral glucose in rats. Scand J Gastroenterol 16:417–420CrossRefPubMed Lauritsen KB, Holst JJ, Moody AJ (1981) Depression of insulin release by anti-GIP serum after oral glucose in rats. Scand J Gastroenterol 16:417–420CrossRefPubMed
23.
Zurück zum Zitat Tseng CC, Kieffer TJ, Jarboe LA, Usdin TB, Wolfe MM (1996) Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 98:2440–2445CrossRefPubMedPubMedCentral Tseng CC, Kieffer TJ, Jarboe LA, Usdin TB, Wolfe MM (1996) Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 98:2440–2445CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Lewis JT, Dayanandan B, Habener JF, Kieffer TJ (2000) Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology 141:3710–3716PubMed Lewis JT, Dayanandan B, Habener JF, Kieffer TJ (2000) Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology 141:3710–3716PubMed
25.
Zurück zum Zitat Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y et al. (1999) Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 96:14843–14847CrossRefPubMedPubMedCentral Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y et al. (1999) Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 96:14843–14847CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Gault VA, Parker JC, Harriott P, Flatt PR, O’Harte FP (2002) Evidence that the major degradation product of glucose-dependent insulinotropic polypeptide, GIP(3–42), is a GIP receptor antagonist in vivo. J Endocrinol 175:525–533CrossRefPubMed Gault VA, Parker JC, Harriott P, Flatt PR, O’Harte FP (2002) Evidence that the major degradation product of glucose-dependent insulinotropic polypeptide, GIP(3–42), is a GIP receptor antagonist in vivo. J Endocrinol 175:525–533CrossRefPubMed
27.
Zurück zum Zitat Nauck M, Schmidt WE, Ebert R, Strietzel J, Cantor P, Hoffmann G et al. (1989) Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab 69:654–662CrossRefPubMed Nauck M, Schmidt WE, Ebert R, Strietzel J, Cantor P, Hoffmann G et al. (1989) Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab 69:654–662CrossRefPubMed
28.
Zurück zum Zitat Ebert R, Unger H, Creutzfeldt W (1983) Preservation of incretin activity after removal of gastric inhibitory polypeptide (GIP) from rat gut extracts by immunoadsorption. Diabetologia 24:449–454CrossRefPubMed Ebert R, Unger H, Creutzfeldt W (1983) Preservation of incretin activity after removal of gastric inhibitory polypeptide (GIP) from rat gut extracts by immunoadsorption. Diabetologia 24:449–454CrossRefPubMed
29.
Zurück zum Zitat Lauritsen KB, Moody AJ, Christensen KC, Lindkaer JS(1980) Gastric inhibitory polypeptide (GIP) and insulin release after small-bowel resection in man. Scand J Gastroenterol 15:833–840CrossRefPubMed Lauritsen KB, Moody AJ, Christensen KC, Lindkaer JS(1980) Gastric inhibitory polypeptide (GIP) and insulin release after small-bowel resection in man. Scand J Gastroenterol 15:833–840CrossRefPubMed
30.
Zurück zum Zitat Lauritsen KB, Lauritzen JB, Christensen KC (1982) Gastric inhibitory polypeptide and insulin release in response to oral and intravenous glucose in coeliac disease. Scand J Gastroenterol 17:241–245CrossRefPubMed Lauritsen KB, Lauritzen JB, Christensen KC (1982) Gastric inhibitory polypeptide and insulin release in response to oral and intravenous glucose in coeliac disease. Scand J Gastroenterol 17:241–245CrossRefPubMed
31.
Zurück zum Zitat Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC (1983) Exon duplication and divergence in the human preproglucagon gene. Nature 304:368–371CrossRefPubMed Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC (1983) Exon duplication and divergence in the human preproglucagon gene. Nature 304:368–371CrossRefPubMed
32.
Zurück zum Zitat Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986). Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261:11880–11889PubMed Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986). Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261:11880–11889PubMed
33.
Zurück zum Zitat Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475CrossRefPubMed Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475CrossRefPubMed
34.
Zurück zum Zitat Baldissera FG, Holst JJ, Knuhtsen S, Hilsted L, Nielsen OV (1988) Oxyntomodulin (glicentin-(33–69)): pharmacokinetics, binding to liver cell membranes, effects on isolated perfused pig pancreas, and secretion from isolated perfused lower small intestine of pigs. Regul Pept 21:151–166CrossRefPubMed Baldissera FG, Holst JJ, Knuhtsen S, Hilsted L, Nielsen OV (1988) Oxyntomodulin (glicentin-(33–69)): pharmacokinetics, binding to liver cell membranes, effects on isolated perfused pig pancreas, and secretion from isolated perfused lower small intestine of pigs. Regul Pept 21:151–166CrossRefPubMed
35.
Zurück zum Zitat Holst JJ (1983) Molecular heterogeneity of glucagon in normal subjects and in patients with glucagon-producing tumours. Diabetologia 24:359–365PubMed Holst JJ (1983) Molecular heterogeneity of glucagon in normal subjects and in patients with glucagon-producing tumours. Diabetologia 24:359–365PubMed
36.
Zurück zum Zitat Holst JJ (1999) Glucagon-like Peptide 1(GLP-1): an intestinal hormone signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab 10:229–234CrossRefPubMed Holst JJ (1999) Glucagon-like Peptide 1(GLP-1): an intestinal hormone signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab 10:229–234CrossRefPubMed
37.
Zurück zum Zitat Orskov C, Wettergren A, Holst JJ (1996) Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 31:665–670CrossRefPubMed Orskov C, Wettergren A, Holst JJ (1996) Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 31:665–670CrossRefPubMed
38.
Zurück zum Zitat Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2:1300–1304CrossRefPubMed Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2:1300–1304CrossRefPubMed
39.
Zurück zum Zitat Kolligs F, Fehmann HC, Goke R, Goke B (1995) Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9–39) amide. Diabetes 44:16–19CrossRefPubMed Kolligs F, Fehmann HC, Goke R, Goke B (1995) Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9–39) amide. Diabetes 44:16–19CrossRefPubMed
40.
Zurück zum Zitat Wang Z, Wang RM, Owji AA, Smith DM, Ghatei MA, Bloom SR (1995) Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest 95:417–421CrossRefPubMedPubMedCentral Wang Z, Wang RM, Owji AA, Smith DM, Ghatei MA, Bloom SR (1995) Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest 95:417–421CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Edwards CM, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA et al. (1999) Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes 48:86–93CrossRefPubMed Edwards CM, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA et al. (1999) Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9–39. Diabetes 48:86–93CrossRefPubMed
42.
Zurück zum Zitat Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL et al. (1996) Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 2:1254–1258CrossRefPubMed Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL et al. (1996) Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 2:1254–1258CrossRefPubMed
43.
Zurück zum Zitat Pederson RA, Satkunarajah M, McIntosh CH, Scrocchi LA, Flamez D, Schuit F et al. (1998) Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor −/− mice. Diabetes 47:1046–1052CrossRefPubMed Pederson RA, Satkunarajah M, McIntosh CH, Scrocchi LA, Flamez D, Schuit F et al. (1998) Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor −/− mice. Diabetes 47:1046–1052CrossRefPubMed
44.
Zurück zum Zitat Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W (1995) Glucagon-like peptide 1 (7–36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol 30:892–896CrossRefPubMed Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W (1995) Glucagon-like peptide 1 (7–36 amide) secretion in response to luminal sucrose from the upper and lower gut. A study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol 30:892–896CrossRefPubMed
45.
Zurück zum Zitat Mortensen K, Christensen LL, Holst JJ, Orskov C (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114:189–196CrossRefPubMed Mortensen K, Christensen LL, Holst JJ, Orskov C (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114:189–196CrossRefPubMed
46.
Zurück zum Zitat Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80:952–957PubMed Deacon CF, Johnsen AH, Holst JJ (1995) Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 80:952–957PubMed
47.
Zurück zum Zitat Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:3585–3596PubMed Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:3585–3596PubMed
48.
Zurück zum Zitat Deacon CF, Nauck MA, Meier J, Hucking K, Holst JJ (2000) Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 85:3575–3581PubMed Deacon CF, Nauck MA, Meier J, Hucking K, Holst JJ (2000) Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 85:3575–3581PubMed
49.
Zurück zum Zitat Knudsen LB, Pridal L (1996) Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318:429–435CrossRefPubMed Knudsen LB, Pridal L (1996) Glucagon-like peptide-1-(9–36) amide is a major metabolite of glucagon-like peptide-1-(7–36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur J Pharmacol 318:429–435CrossRefPubMed
50.
Zurück zum Zitat Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept 85:9–24CrossRefPubMed Mentlein R (1999) Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept 85:9–24CrossRefPubMed
51.
Zurück zum Zitat Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ (1995) Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 44:1126–1131CrossRefPubMed Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ (1995) Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 44:1126–1131CrossRefPubMed
52.
Zurück zum Zitat Vilsboll T, Agerso H, Krarup T, Holst JJ (2003) Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 88:220–224CrossRefPubMed Vilsboll T, Agerso H, Krarup T, Holst JJ (2003) Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab 88:220–224CrossRefPubMed
53.
Zurück zum Zitat Deacon CF, Pridal L, Klarskov L, Olesen M, Holst JJ (1996) Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol 271:E458–E464PubMed Deacon CF, Pridal L, Klarskov L, Olesen M, Holst JJ (1996) Glucagon-like peptide 1 undergoes differential tissue-specific metabolism in the anesthetized pig. Am J Physiol 271:E458–E464PubMed
54.
Zurück zum Zitat Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50:609–613CrossRefPubMed Vilsboll T, Krarup T, Deacon CF, Madsbad S, Holst JJ (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50:609–613CrossRefPubMed
55.
Zurück zum Zitat Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG et al. (2003) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88:2706–2713CrossRefPubMed Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG et al. (2003) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88:2706–2713CrossRefPubMed
56.
Zurück zum Zitat Vilsboll T, Agersoe H, Krarup T, Holst JJ (2003) Similar elimination rates of GLP-1 in obese type diabetic patients and healthy subjects. J Clin Endocrinol Metab 88:220–224CrossRefPubMed Vilsboll T, Agersoe H, Krarup T, Holst JJ (2003) Similar elimination rates of GLP-1 in obese type diabetic patients and healthy subjects. J Clin Endocrinol Metab 88:220–224CrossRefPubMed
57.
Zurück zum Zitat Deacon CF, Danielsen P, Klarskov L, Olesen M, Holst JJ (2001) Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 50:1588–1597CrossRefPubMed Deacon CF, Danielsen P, Klarskov L, Olesen M, Holst JJ (2001) Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 50:1588–1597CrossRefPubMed
58.
Zurück zum Zitat Jia X, Brown JC, Ma P, Pederson RA, McIntosh CH (1995) Effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-I-(7–36) on insulin secretion. Am J Physiol 268:E645–E651PubMed Jia X, Brown JC, Ma P, Pederson RA, McIntosh CH (1995) Effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-I-(7–36) on insulin secretion. Am J Physiol 268:E645–E651PubMed
59.
Zurück zum Zitat Elahi D, McAloon Dyke M, Fukagawa NK, Meneilly GS, Sclater AL, Minaker KL et al. (1994) The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept 51:63–74CrossRefPubMed Elahi D, McAloon Dyke M, Fukagawa NK, Meneilly GS, Sclater AL, Minaker KL et al. (1994) The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept 51:63–74CrossRefPubMed
60.
Zurück zum Zitat Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307CrossRefPubMedPubMedCentral Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Nauck MA, Bartels E, Orskov C, Ebert R, Creutzfeldt W (1993) Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7–36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 76:912–917PubMed Nauck MA, Bartels E, Orskov C, Ebert R, Creutzfeldt W (1993) Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7–36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 76:912–917PubMed
62.
Zurück zum Zitat Toft-Nielsen M, Madsbad S, Holst JJ (1998) Exaggerated secretion of glucagon-like peptide-1 (GLP-1) could cause reactive hypoglycaemia. Diabetologia 41:1180–1186CrossRefPubMed Toft-Nielsen M, Madsbad S, Holst JJ (1998) Exaggerated secretion of glucagon-like peptide-1 (GLP-1) could cause reactive hypoglycaemia. Diabetologia 41:1180–1186CrossRefPubMed
63.
Zurück zum Zitat Krarup T, Saurbrey N, Moody AJ, Kuhl C, Madsbad S (1987) Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 36:677–682CrossRefPubMed Krarup T, Saurbrey N, Moody AJ, Kuhl C, Madsbad S (1987) Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 36:677–682CrossRefPubMed
64.
Zurück zum Zitat Vilsboll T, Krarup T, Madsbad S, Holst JJ (2003) Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 114:115–121CrossRefPubMed Vilsboll T, Krarup T, Madsbad S, Holst JJ (2003) Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects. Regul Pept 114:115–121CrossRefPubMed
65.
Zurück zum Zitat Preitner F, Burcelin R, Ibberson M, Hansotia T, Drucker D, Thorens B (2002) Disruption of both GLP-1 and GIP signalling pathways in the mouse leads to glucose intolerance. Diabetes 51 [Suppl 2]:A66 (abstract) Preitner F, Burcelin R, Ibberson M, Hansotia T, Drucker D, Thorens B (2002) Disruption of both GLP-1 and GIP signalling pathways in the mouse leads to glucose intolerance. Diabetes 51 [Suppl 2]:A66 (abstract)
66.
Zurück zum Zitat Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK et al. (2001) Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 86:3717–3723CrossRefPubMed Toft-Nielsen MB, Damholt MB, Madsbad S, Hilsted LM, Hughes TE, Michelsen BK et al. (2001) Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 86:3717–3723CrossRefPubMed
67.
Zurück zum Zitat Vaag AA, Holst JJ, Volund A, Beck-Nielsen HB (1996) Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)—evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 135:425–432CrossRefPubMed Vaag AA, Holst JJ, Volund A, Beck-Nielsen HB (1996) Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)—evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 135:425–432CrossRefPubMed
68.
Zurück zum Zitat Nyholm B, Walker M, Gravholt CH, Shearing PA, Sturis J, Alberti KG et al. (1999) Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of Type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 42:1314–1323CrossRefPubMed Nyholm B, Walker M, Gravholt CH, Shearing PA, Sturis J, Alberti KG et al. (1999) Twenty-four-hour insulin secretion rates, circulating concentrations of fuel substrates and gut incretin hormones in healthy offspring of Type II (non-insulin-dependent) diabetic parents: evidence of several aberrations. Diabetologia 42:1314–1323CrossRefPubMed
69.
Zurück zum Zitat Nauck M, Hahn S, Sauerwald A, Schmeigel W (2000) Lack of germline mutations in the proglucagon gene region coding for glucagon-like peptide 1 in type 2 diabetic (NIDDM) patients. Exp Clin Endocrinol Diabetes 108:72–75CrossRefPubMed Nauck M, Hahn S, Sauerwald A, Schmeigel W (2000) Lack of germline mutations in the proglucagon gene region coding for glucagon-like peptide 1 in type 2 diabetic (NIDDM) patients. Exp Clin Endocrinol Diabetes 108:72–75CrossRefPubMed
70.
Zurück zum Zitat Orskov C, Vilsboll T, Krarup T, Inagaki N, Hjorth SA (1999) Lack of germ-line mutations in the GIP-coding region of the pro-GIP in type II diabetic patients. Diabetes 48 [Suppl 1]:A427 (abstract) Orskov C, Vilsboll T, Krarup T, Inagaki N, Hjorth SA (1999) Lack of germ-line mutations in the GIP-coding region of the pro-GIP in type II diabetic patients. Diabetes 48 [Suppl 1]:A427 (abstract)
71.
Zurück zum Zitat Holst JJ, Gromada J, Nauck MA (1997) The pathogenesis of NIDDM involves a defective expression of the GIP receptor. Diabetologia 40:984–986CrossRefPubMed Holst JJ, Gromada J, Nauck MA (1997) The pathogenesis of NIDDM involves a defective expression of the GIP receptor. Diabetologia 40:984–986CrossRefPubMed
72.
Zurück zum Zitat Kubota A, Yamada Y, Hayami T, Yasuda K, Someya Y, Ihara Y et al. (1996) Identification of two missense mutations in the GIP receptor gene: a functional study and association analysis with NIDDM: no evidence of association with Japanese NIDDM subjects. Diabetes 45:1701–1705CrossRefPubMed Kubota A, Yamada Y, Hayami T, Yasuda K, Someya Y, Ihara Y et al. (1996) Identification of two missense mutations in the GIP receptor gene: a functional study and association analysis with NIDDM: no evidence of association with Japanese NIDDM subjects. Diabetes 45:1701–1705CrossRefPubMed
73.
Zurück zum Zitat Almind K, Ambye L, Urhammer SA, Hansen T, Echwald SM, Holst JJ et al. (1998) Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functionel expression studies in Chinese hamster fibroblast cells. Diabetologia 41:1194–1198CrossRefPubMed Almind K, Ambye L, Urhammer SA, Hansen T, Echwald SM, Holst JJ et al. (1998) Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functionel expression studies in Chinese hamster fibroblast cells. Diabetologia 41:1194–1198CrossRefPubMed
74.
Zurück zum Zitat Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA (2001) Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 50:1004–1011CrossRefPubMed Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA (2001) Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 50:1004–1011CrossRefPubMed
75.
Zurück zum Zitat Meier JJ, Hucking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA (2001) Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 50:2497–2504CrossRefPubMed Meier JJ, Hucking K, Holst JJ, Deacon CF, Schmiegel WH, Nauck MA (2001) Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes 50:2497–2504CrossRefPubMed
76.
Zurück zum Zitat Vilsboll T, Toft-Nielsen MB, Krarup T, Madsbad S, Dinesen B, Holst JJ (2000) Evaluation of beta-cell secretory capacity using glucagon-like peptide 1. Diabetes Care 23:807–812CrossRefPubMed Vilsboll T, Toft-Nielsen MB, Krarup T, Madsbad S, Dinesen B, Holst JJ (2000) Evaluation of beta-cell secretory capacity using glucagon-like peptide 1. Diabetes Care 23:807–812CrossRefPubMed
77.
Zurück zum Zitat Vilsboll T, Krarup T, Madsbad S, Holst JJ (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45:1111–1119CrossRefPubMed Vilsboll T, Krarup T, Madsbad S, Holst JJ (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45:1111–1119CrossRefPubMed
78.
Zurück zum Zitat Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110CrossRefPubMed
79.
Zurück zum Zitat Kjems LL, Holst JJ, Volund A, Madsbad S (2003) The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386CrossRefPubMed Kjems LL, Holst JJ, Volund A, Madsbad S (2003) The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386CrossRefPubMed
80.
Zurück zum Zitat Vilsboll T, Knop FK, Krarup T, Johansen A, Madsbad S, Larsen S et al. (2003) The pathophysiology of diabetes involves a defective amplification of the late phase insulin response to glucose by GIP—regardless of aetiology and phenotype. J Clin Endocrinol Metab 88:4897–4903CrossRefPubMed Vilsboll T, Knop FK, Krarup T, Johansen A, Madsbad S, Larsen S et al. (2003) The pathophysiology of diabetes involves a defective amplification of the late phase insulin response to glucose by GIP—regardless of aetiology and phenotype. J Clin Endocrinol Metab 88:4897–4903CrossRefPubMed
81.
Zurück zum Zitat Gromada J, Holst JJ, Rorsman P (1998) Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch 435:583–594CrossRefPubMed Gromada J, Holst JJ, Rorsman P (1998) Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch 435:583–594CrossRefPubMed
82.
Zurück zum Zitat Holst JJ (2002) Gastric inhibitory polypeptide analogues: do they have a therapeutic role in diabetes mellitus similar to that of glucagon-like Peptide-1? BioDrugs 16:175–181CrossRefPubMed Holst JJ (2002) Gastric inhibitory polypeptide analogues: do they have a therapeutic role in diabetes mellitus similar to that of glucagon-like Peptide-1? BioDrugs 16:175–181CrossRefPubMed
83.
Zurück zum Zitat Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W (1993) Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744CrossRefPubMed Nauck MA, Kleine N, Orskov C, Holst JJ, Willms B, Creutzfeldt W (1993) Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744CrossRefPubMed
84.
Zurück zum Zitat Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W (1995) Insulinotropic actions of intravenous glucagon-like peptide-1 (GLP-1) [7–36 amide] in the fasting state in healthy subjects. Acta Diabetol 32:13–16CrossRefPubMed Qualmann C, Nauck MA, Holst JJ, Orskov C, Creutzfeldt W (1995) Insulinotropic actions of intravenous glucagon-like peptide-1 (GLP-1) [7–36 amide] in the fasting state in healthy subjects. Acta Diabetol 32:13–16CrossRefPubMed
85.
Zurück zum Zitat Vilsboll T, Krarup T, Madsbad S, Holst JJ (2001) No reactive hypoglycaemia in Type 2 diabetic patients after subcutaneous administration of GLP-1 and intravenous glucose. Diabet Med 18:144–149CrossRefPubMed Vilsboll T, Krarup T, Madsbad S, Holst JJ (2001) No reactive hypoglycaemia in Type 2 diabetic patients after subcutaneous administration of GLP-1 and intravenous glucose. Diabet Med 18:144–149CrossRefPubMed
86.
Zurück zum Zitat Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 130:159–166PubMed Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-I(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 130:159–166PubMed
87.
Zurück zum Zitat Buteau J, Roduit R, Susini S, Prentki M (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 42:856–864CrossRefPubMed Buteau J, Roduit R, Susini S, Prentki M (1999) Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 42:856–864CrossRefPubMed
88.
Zurück zum Zitat Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276CrossRefPubMed Xu G, Stoffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48:2270–2276CrossRefPubMed
89.
Zurück zum Zitat Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF et al. (2000) Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49:741–748CrossRefPubMed Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF et al. (2000) Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 49:741–748CrossRefPubMed
90.
Zurück zum Zitat Zhou J, Wang X, Pineyro MA, Egan JM (1999) Glucagon-like peptide 1 and exendin-4 convert pancrteatic AR42J cells into glucagon- and insulin-producing cells. Diabetes 48:2358–2366CrossRefPubMed Zhou J, Wang X, Pineyro MA, Egan JM (1999) Glucagon-like peptide 1 and exendin-4 convert pancrteatic AR42J cells into glucagon- and insulin-producing cells. Diabetes 48:2358–2366CrossRefPubMed
91.
Zurück zum Zitat Drucker DJ (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 17:161–171CrossRefPubMed Drucker DJ (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 17:161–171CrossRefPubMed
92.
Zurück zum Zitat Perfetti R, Zhou J, Doyle ME, Egan JM (2000) Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141:4600–4605CrossRef Perfetti R, Zhou J, Doyle ME, Egan JM (2000) Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141:4600–4605CrossRef
93.
Zurück zum Zitat Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA (1996) Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7–36) amide in type I diabetic patients. Diabetes Care 19:580–586CrossRefPubMed Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA (1996) Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7–36) amide in type I diabetic patients. Diabetes Care 19:580–586CrossRefPubMed
94.
Zurück zum Zitat Brand CL, Jorgensen PN, Svendsen I, Holst JJ (1996) Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits. Diabetes 45:1076–1083CrossRefPubMed Brand CL, Jorgensen PN, Svendsen I, Holst JJ (1996) Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan-induced diabetic rabbits. Diabetes 45:1076–1083CrossRefPubMed
95.
Zurück zum Zitat Petersen KF, Sullivan JT (2001) Effects of a novel glucagon receptor antagonist (Bay 27–9955) on glucagon-stimulated glucose production in humans. Diabetologia 44:2018–2024CrossRefPubMed Petersen KF, Sullivan JT (2001) Effects of a novel glucagon receptor antagonist (Bay 27–9955) on glucagon-stimulated glucose production in humans. Diabetologia 44:2018–2024CrossRefPubMed
96.
Zurück zum Zitat Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1993) Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38:665–673CrossRefPubMed Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ (1993) Truncated GLP-1 (proglucagon 78–107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 38:665–673CrossRefPubMed
97.
Zurück zum Zitat Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R et al. (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273:E981–E988PubMed Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R et al. (1997) Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 273:E981–E988PubMed
98.
Zurück zum Zitat Young A, Denaro M (1998) Roles of amylin in diabetes and in regulation of nutrient load Nutrition 14:524–527PubMed Young A, Denaro M (1998) Roles of amylin in diabetes and in regulation of nutrient load Nutrition 14:524–527PubMed
99.
Zurück zum Zitat Flint A, Raben A, Astrup A, Holst JJ (1998) Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101:515–520CrossRefPubMedPubMedCentral Flint A, Raben A, Astrup A, Holst JJ (1998) Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101:515–520CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Naslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ et al. (1999) Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311CrossRefPubMed Naslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ et al. (1999) Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 23:304–311CrossRefPubMed
101.
Zurück zum Zitat Gutzwiller JP, Drewe J, Goke B, Schmidt H, Rohrer B, Lareida J et al. (1999) Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 276:R1541–R1544PubMed Gutzwiller JP, Drewe J, Goke B, Schmidt H, Rohrer B, Lareida J et al. (1999) Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 276:R1541–R1544PubMed
102.
Zurück zum Zitat Rachman J, Barrow BA, Levy JC, Turner RC (1997) Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 40:205–211CrossRefPubMed Rachman J, Barrow BA, Levy JC, Turner RC (1997) Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 40:205–211CrossRefPubMed
103.
Zurück zum Zitat Nauck MA, Wollschlager D, Werner J, Holst JJ, Orskov C, Creutzfeldt W et al. (1996) Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 39:1546–1553CrossRefPubMed Nauck MA, Wollschlager D, Werner J, Holst JJ, Orskov C, Creutzfeldt W et al. (1996) Effects of subcutaneous glucagon-like peptide 1 (GLP-1 [7–36 amide]) in patients with NIDDM. Diabetologia 39:1546–1553CrossRefPubMed
104.
Zurück zum Zitat Zander M, Madsbad S, Madsen JL, Holst JJ (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359:824–830CrossRefPubMed Zander M, Madsbad S, Madsen JL, Holst JJ (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359:824–830CrossRefPubMed
105.
Zurück zum Zitat Holst JJ (2002) Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1. Diabetes Metab Res Rev 18:430–441CrossRefPubMed Holst JJ (2002) Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1. Diabetes Metab Res Rev 18:430–441CrossRefPubMed
106.
Zurück zum Zitat Baron A, Poon T, Taylor K, Nielsen L, Boies S, Zhou J et al. (2003) Exenatide (synthetic exendin-4) showed marked HbA1c decline over 5 months in patients with type 2 diabetes failing oral agents in an open-label study. American Diabetes Association, Late-breaking clinical studies, 3-LB (abstract) Baron A, Poon T, Taylor K, Nielsen L, Boies S, Zhou J et al. (2003) Exenatide (synthetic exendin-4) showed marked HbA1c decline over 5 months in patients with type 2 diabetes failing oral agents in an open-label study. American Diabetes Association, Late-breaking clinical studies, 3-LB (abstract)
107.
Zurück zum Zitat Turner RC (1998) The U.K. Prospective Diabetes Study. A review. Diabetes Care 21 [Suppl 3]:C35-8–C35-C38 Turner RC (1998) The U.K. Prospective Diabetes Study. A review. Diabetes Care 21 [Suppl 3]:C35-8–C35-C38
Metadaten
Titel
Incretins, insulin secretion and Type 2 diabetes mellitus
verfasst von
T. Vilsbøll
J. J. Holst
Publikationsdatum
01.03.2004
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 3/2004
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-004-1342-6

Weitere Artikel der Ausgabe 3/2004

Diabetologia 3/2004 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.