Skip to main content
Erschienen in: Diabetologia 6/2006

01.06.2006 | Article

Tissue selectivity of insulin detemir action in vivo

verfasst von: A. M. Hennige, T. Sartorius, O. Tschritter, H. Preissl, A. Fritsche, P. Ruth, H.-U. Häring

Erschienen in: Diabetologia | Ausgabe 6/2006

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Recombinant DNA technology is a useful tool that can be used to create insulin analogues with modified absorption kinetics to improve glycaemic control in patients with type 1 and type 2 diabetes. Among conventional insulin analogues, which are usually created by amino acid exchange, insulin detemir is the first analogue to be acylated with a fatty acid to enable reversible albumin binding. In this study we determined activation of the insulin receptor (IR)-signalling cascade by insulin detemir at the level of IR and IR substrate (Irs) phosphorylation, as well as downstream signalling elements such as phosphatidylinositol 3-kinase and Akt, and performed epidural EEG in vivo.

Methods

C57Bl/6 mice were injected i.v. with either insulin detemir or human insulin and Western blot analysis was performed on liver, muscle, hypothalamic and cerebrocortical tissues. Moreover, cerebrocortical activity was detected by EEG in awake mice and cerebral insulin concentrations were measured following human insulin and insulin detemir injection.

Results

The time course and extent of IR phosphorylation in peripheral tissues were similar following insulin detemir treatment compared with human insulin, but insulin signalling in hypothalamic and cerebrocortical tissue determined by tyrosine-phosphorylation of the IR and Irs2 proteins occurred faster and was enhanced due to a higher insulin detemir concentration in the brain. Moreover, epidural EEG in mice displayed increased cortical activity using insulin detemir.

Conclusions/interpretation

Taken together, these data suggest that insulin detemir has a tissue-selective action, with a relative preference for brain compared with peripheral tissues.
Literatur
1.
Zurück zum Zitat Mudaliar SR, Lindberg FA, Joyce M et al (1999) Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care 22:1501–1506PubMedCrossRef Mudaliar SR, Lindberg FA, Joyce M et al (1999) Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care 22:1501–1506PubMedCrossRef
2.
Zurück zum Zitat Gerich JE (2002) Novel insulins: expanding options in diabetes management. Am J Med 113:308–316PubMedCrossRef Gerich JE (2002) Novel insulins: expanding options in diabetes management. Am J Med 113:308–316PubMedCrossRef
3.
Zurück zum Zitat Gerich JE (2004) Insulin glargine: long-acting basal insulin analog for improved metabolic control. Curr Med Res Opin 20:31–37PubMedCrossRef Gerich JE (2004) Insulin glargine: long-acting basal insulin analog for improved metabolic control. Curr Med Res Opin 20:31–37PubMedCrossRef
4.
Zurück zum Zitat Havelund S, Plum A, Ribel U et al (2004) The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21:1498–1504PubMedCrossRef Havelund S, Plum A, Ribel U et al (2004) The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21:1498–1504PubMedCrossRef
5.
Zurück zum Zitat Kurtzhals P, Havelund S, Jonassen I, Markussen J (1997) Effect of fatty acids and selected drugs on the albumin binding of a long-acting, acylated insulin analogue. J Pharm Sci 86:1365–1368PubMedCrossRef Kurtzhals P, Havelund S, Jonassen I, Markussen J (1997) Effect of fatty acids and selected drugs on the albumin binding of a long-acting, acylated insulin analogue. J Pharm Sci 86:1365–1368PubMedCrossRef
6.
Zurück zum Zitat Kurtzhals P (2004) Engineering predictability and protraction in a basal insulin analogue: the pharmacology of insulin detemir. Int J Obes Relat Metab Disord 28(Suppl 2):S23–S28PubMedCrossRef Kurtzhals P (2004) Engineering predictability and protraction in a basal insulin analogue: the pharmacology of insulin detemir. Int J Obes Relat Metab Disord 28(Suppl 2):S23–S28PubMedCrossRef
7.
Zurück zum Zitat Kurtzhals P, Schaffer L, Sorensen A et al (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005PubMedCrossRef Kurtzhals P, Schaffer L, Sorensen A et al (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49:999–1005PubMedCrossRef
8.
Zurück zum Zitat Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Ribel U, Markussen J (1996) Albumin binding and time action of acylated insulins in various species. J Pharm Sci 85:304–308PubMedCrossRef Kurtzhals P, Havelund S, Jonassen I, Kiehr B, Ribel U, Markussen J (1996) Albumin binding and time action of acylated insulins in various species. J Pharm Sci 85:304–308PubMedCrossRef
9.
Zurück zum Zitat De Leeuw I, Vague P, Selam JL et al (2005) Insulin detemir used in basal-bolus therapy in people with type 1 diabetes is associated with a lower risk of nocturnal hypoglycaemia and less weight gain over 12 months in comparison to NPH insulin. Diabetes Obes Metab 7:73–82PubMedCrossRef De Leeuw I, Vague P, Selam JL et al (2005) Insulin detemir used in basal-bolus therapy in people with type 1 diabetes is associated with a lower risk of nocturnal hypoglycaemia and less weight gain over 12 months in comparison to NPH insulin. Diabetes Obes Metab 7:73–82PubMedCrossRef
10.
Zurück zum Zitat Heise T, Nosek L, Ronn BB et al (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53:1614–1620PubMedCrossRef Heise T, Nosek L, Ronn BB et al (2004) Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 53:1614–1620PubMedCrossRef
11.
Zurück zum Zitat Vague P, Selam JL, Skeie S et al (2003) Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basal-bolus regimen with premeal insulin aspart. Diabetes Care 26:590–596PubMedCrossRef Vague P, Selam JL, Skeie S et al (2003) Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basal-bolus regimen with premeal insulin aspart. Diabetes Care 26:590–596PubMedCrossRef
12.
Zurück zum Zitat Wing RR, Klein R, Moss SE (1990) Weight gain associated with improved glycemic control in population-based sample of subjects with type I diabetes. Diabetes Care 13:1106–1109PubMedCrossRef Wing RR, Klein R, Moss SE (1990) Weight gain associated with improved glycemic control in population-based sample of subjects with type I diabetes. Diabetes Care 13:1106–1109PubMedCrossRef
14.
Zurück zum Zitat Fritsche A, Haring H (2004) At last, a weight neutral insulin? Int J Obes Relat Metab Disord 28(Suppl 2):S41–S46PubMedCrossRef Fritsche A, Haring H (2004) At last, a weight neutral insulin? Int J Obes Relat Metab Disord 28(Suppl 2):S41–S46PubMedCrossRef
15.
Zurück zum Zitat White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422 White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422
16.
Zurück zum Zitat Pirola L, Johnston AM, Van Obberghen E (2004) Modulation of insulin action. Diabetologia 47:170–184PubMedCrossRef Pirola L, Johnston AM, Van Obberghen E (2004) Modulation of insulin action. Diabetologia 47:170–184PubMedCrossRef
17.
Zurück zum Zitat Lin X, Taguchi A, Park S et al (2004) Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest 114:908–916PubMed Lin X, Taguchi A, Park S et al (2004) Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest 114:908–916PubMed
18.
Zurück zum Zitat Porte D Jr, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54:1264–1276PubMedCrossRef Porte D Jr, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54:1264–1276PubMedCrossRef
19.
Zurück zum Zitat Hennige AM, Burks DJ, Ozcan U et al (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112:1521–1532PubMed Hennige AM, Burks DJ, Ozcan U et al (2003) Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112:1521–1532PubMed
20.
Zurück zum Zitat Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring HU (1997) Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK- 2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 40:1358–1362PubMedCrossRef Kellerer M, Koch M, Metzinger E, Mushack J, Capp E, Haring HU (1997) Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK- 2) and insulin receptor substrate-2 (IRS-2) dependent pathways. Diabetologia 40:1358–1362PubMedCrossRef
21.
Zurück zum Zitat Levy WJ (1987) Effect of epoch length on power spectrum analysis of the EEG. Anesthesiology 66:489–495PubMedCrossRef Levy WJ (1987) Effect of epoch length on power spectrum analysis of the EEG. Anesthesiology 66:489–495PubMedCrossRef
22.
Zurück zum Zitat Woods SC, Seeley RJ, Baskin DG, Schwartz MW (2003) Insulin and the blood–brain barrier. Curr Pharm Des 9:795–800PubMedCrossRef Woods SC, Seeley RJ, Baskin DG, Schwartz MW (2003) Insulin and the blood–brain barrier. Curr Pharm Des 9:795–800PubMedCrossRef
23.
Zurück zum Zitat Knott GW, Dziegielewska KM, Habgood MD, Li ZS, Saunders NR (1997) Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica). J Physiol 499:179–194PubMed Knott GW, Dziegielewska KM, Habgood MD, Li ZS, Saunders NR (1997) Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica). J Physiol 499:179–194PubMed
24.
Zurück zum Zitat Shen DD, Artru AA, Adkison KK (2004) Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 56:1825–1857PubMedCrossRef Shen DD, Artru AA, Adkison KK (2004) Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv Drug Deliv Rev 56:1825–1857PubMedCrossRef
25.
Zurück zum Zitat Benedict C, Hallschmid M, Hatke A et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29:1326–1334PubMedCrossRef Benedict C, Hallschmid M, Hatke A et al (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29:1326–1334PubMedCrossRef
26.
Zurück zum Zitat Hordern SV, Wright JE, Umpleby AM, Shojaee-Moradie F, Amiss J, Russell-Jones DL (2005) Comparison of the effects on glucose and lipid metabolism of equipotent doses of insulin detemir and NPH insulin with a 16-h euglycaemic clamp. Diabetologia 48:420–426PubMedCrossRef Hordern SV, Wright JE, Umpleby AM, Shojaee-Moradie F, Amiss J, Russell-Jones DL (2005) Comparison of the effects on glucose and lipid metabolism of equipotent doses of insulin detemir and NPH insulin with a 16-h euglycaemic clamp. Diabetologia 48:420–426PubMedCrossRef
27.
Zurück zum Zitat Burks DJ, de Mora JF, Schubert M et al (2000) IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407:377–382PubMedCrossRef Burks DJ, de Mora JF, Schubert M et al (2000) IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407:377–382PubMedCrossRef
28.
Zurück zum Zitat Bruning JC, Gautam D, Burks DJ et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125PubMedCrossRef Bruning JC, Gautam D, Burks DJ et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125PubMedCrossRef
29.
Zurück zum Zitat Henneberg N, Hoyer S (1995) Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriatr 21:63–74PubMedCrossRef Henneberg N, Hoyer S (1995) Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? Arch Gerontol Geriatr 21:63–74PubMedCrossRef
30.
Zurück zum Zitat Schubert M, Brazil DP, Burks DJ et al (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092PubMed Schubert M, Brazil DP, Burks DJ et al (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23:7084–7092PubMed
31.
Zurück zum Zitat Niswender KD, Morrison CD, Clegg DJ et al (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52:227–231PubMedCrossRef Niswender KD, Morrison CD, Clegg DJ et al (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52:227–231PubMedCrossRef
32.
Zurück zum Zitat Selbach O, Doreulee N, Bohla C et al (2004) Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience 127:519–528PubMedCrossRef Selbach O, Doreulee N, Bohla C et al (2004) Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling. Neuroscience 127:519–528PubMedCrossRef
33.
Zurück zum Zitat Molle M, Marshall L, Gais S, Born J (2004) Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci USA 101:13963–13968PubMedCrossRef Molle M, Marshall L, Gais S, Born J (2004) Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci USA 101:13963–13968PubMedCrossRef
Metadaten
Titel
Tissue selectivity of insulin detemir action in vivo
verfasst von
A. M. Hennige
T. Sartorius
O. Tschritter
H. Preissl
A. Fritsche
P. Ruth
H.-U. Häring
Publikationsdatum
01.06.2006
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 6/2006
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0192-9

Weitere Artikel der Ausgabe 6/2006

Diabetologia 6/2006 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.