Skip to main content
Erschienen in: Diabetologia 7/2008

01.07.2008 | Article

Glibenclamide activates translation in rat pancreatic beta cells through calcium-dependent mTOR, PKA and MEK signalling pathways

verfasst von: Q. Wang, H. Heimberg, D. Pipeleers, Z. Ling

Erschienen in: Diabetologia | Ausgabe 7/2008

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Prolonged exposure of rat beta cells to the insulin secretagogue glibenclamide has been found to induce a sustained increase in basal insulin synthesis. This effect was calcium-dependent and localised in cells that had been degranulated by the drug. Since it was blocked by the translation inhibitor cycloheximide, we examined whether sustained exposure to glibenclamide activates translational factors by calcium-dependent signalling pathways.

Methods

Purified rat beta cells were cultured with and without glibenclamide in the presence or absence of inhibitors of calcium-dependent signalling pathways before measurement of basal and stimulated protein and insulin synthesis, and assessment of abundance of (phosphorylated) translation factors.

Results

A 24 h exposure to glibenclamide induced activation of four translation factors, i.e. phosphorylation of eukaryotic initiation factor (eIF) 4e binding protein 1 and ribosomal protein S6 (rpS6), and dephosphorylation of eIF-2α and eukaryotic elongation factor 2. The rise in phospho-rpS6 intensity was localised to a subpopulation of beta cells with low insulin content. This activation of translational factors and the associated elevation of insulin synthesis were completely blocked by the calcium channel blocker verapamil and partially blocked by the mammalian target of rapamycin (mTOR) inhibitor rapamycin, the protein kinase A (PKA) inhibitor Rp-8-Br-cAMPs and the mitogen-activated protein kinase/ extracellular signal-regulated kinase kinase (MEK) inhibitor U0126; a combination of inhibitors exhibited additive effects.

Conclusions/interpretation

Prolonged exposure to glibenclamide activates protein translation in pancreatic beta cells through the calcium-regulated mTOR, PKA and MEK signalling pathways. The observed intercellular differences in translation activation are proposed as underlying mechanism for functional heterogeneity in the pancreatic beta cell population.
Literatur
1.
Zurück zum Zitat Pipeleers D, Kiekens R, Ling Z, Wilikens A, Schuit F (1994) Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia 37(Suppl 2):S57–S64PubMedCrossRef Pipeleers D, Kiekens R, Ling Z, Wilikens A, Schuit F (1994) Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia 37(Suppl 2):S57–S64PubMedCrossRef
2.
Zurück zum Zitat Ling Z, Kiekens R, Mahler T et al (1996) Effects of chronically elevated glucose levels on the functional properties of rat pancreatic beta-cells. Diabetes 45:1774–1782PubMedCrossRef Ling Z, Kiekens R, Mahler T et al (1996) Effects of chronically elevated glucose levels on the functional properties of rat pancreatic beta-cells. Diabetes 45:1774–1782PubMedCrossRef
3.
Zurück zum Zitat Ling Z, Wang Q, Stange G, In’t Veld P, Pipeleers D (2006) Glibenclamide treatment recruits beta-cell subpopulation into elevated and sustained basal insulin synthetic activity. Diabetes 55:78–85PubMedCrossRef Ling Z, Wang Q, Stange G, In’t Veld P, Pipeleers D (2006) Glibenclamide treatment recruits beta-cell subpopulation into elevated and sustained basal insulin synthetic activity. Diabetes 55:78–85PubMedCrossRef
4.
Zurück zum Zitat Yamato E, Ikegami H, Tahara Y et al (1994) Glyburide enhances insulin gene expression and glucose-induced insulin release in isolated rat islets. Biochem Biophys Res Commun 199:327–333PubMedCrossRef Yamato E, Ikegami H, Tahara Y et al (1994) Glyburide enhances insulin gene expression and glucose-induced insulin release in isolated rat islets. Biochem Biophys Res Commun 199:327–333PubMedCrossRef
5.
Zurück zum Zitat Yamato E, Ikegami H, Tahara Y et al (1993) Cellular mechanism of glyburide-induced insulin gene expression in isolated rat islets. Biochem Biophys Res Commun 197:957–964PubMedCrossRef Yamato E, Ikegami H, Tahara Y et al (1993) Cellular mechanism of glyburide-induced insulin gene expression in isolated rat islets. Biochem Biophys Res Commun 197:957–964PubMedCrossRef
6.
Zurück zum Zitat Guiot Y, Henquin JC, Rahier J (1994) Effects of glibenclamide on pancreatic beta-cell proliferation in vivo. Eur J Pharmacol 261:157–161PubMedCrossRef Guiot Y, Henquin JC, Rahier J (1994) Effects of glibenclamide on pancreatic beta-cell proliferation in vivo. Eur J Pharmacol 261:157–161PubMedCrossRef
7.
Zurück zum Zitat Kwon G, Marshall CA, Liu H, Pappan KL, Remedi MS, McDaniel ML (2006) Glucose-stimulated DNA synthesis through mammalian target of rapamycin (mTOR) is regulated by KATP channels: effects on cell cycle progression in rodent islets. J Biol Chem 281:3261–3267PubMedCrossRef Kwon G, Marshall CA, Liu H, Pappan KL, Remedi MS, McDaniel ML (2006) Glucose-stimulated DNA synthesis through mammalian target of rapamycin (mTOR) is regulated by KATP channels: effects on cell cycle progression in rodent islets. J Biol Chem 281:3261–3267PubMedCrossRef
8.
Zurück zum Zitat Kwon G, Marshall CA, Pappan KL, Remedi MS, McDaniel ML (2004) Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 53(Suppl 3):S225–S232PubMedCrossRef Kwon G, Marshall CA, Pappan KL, Remedi MS, McDaniel ML (2004) Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes 53(Suppl 3):S225–S232PubMedCrossRef
9.
Zurück zum Zitat Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826PubMedCrossRef Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826PubMedCrossRef
10.
Zurück zum Zitat Proud CG (2007) Signaling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234PubMedCrossRef Proud CG (2007) Signaling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234PubMedCrossRef
11.
12.
Zurück zum Zitat Xu G, Marshall CA, Lin TA et al (1998) Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem 273:4485–4491PubMedCrossRef Xu G, Marshall CA, Lin TA et al (1998) Insulin mediates glucose-stimulated phosphorylation of PHAS-I by pancreatic beta cells. An insulin-receptor mechanism for autoregulation of protein synthesis by translation. J Biol Chem 273:4485–4491PubMedCrossRef
13.
Zurück zum Zitat Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480PubMedCrossRef Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480PubMedCrossRef
14.
Zurück zum Zitat Meyuhas O (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267:6321–6330PubMedCrossRef Meyuhas O (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267:6321–6330PubMedCrossRef
15.
Zurück zum Zitat Browne GJ, Proud CG (2002) Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 269:5360–5368PubMedCrossRef Browne GJ, Proud CG (2002) Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 269:5360–5368PubMedCrossRef
16.
Zurück zum Zitat Hershey JWB, Merrick WC (2000) The pathway and mechanism of initiation of protein synthesis. In: Sonenberg N, Mathews MB, Hershey JWB (eds) Translational control of gene expression, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 33–88 Hershey JWB, Merrick WC (2000) The pathway and mechanism of initiation of protein synthesis. In: Sonenberg N, Mathews MB, Hershey JWB (eds) Translational control of gene expression, 2nd edn. Cold Spring Harbor Laboratory Press, New York, pp 33–88
17.
Zurück zum Zitat McDaniel ML, Marshall CA, Pappan KL, Kwon G (2002) Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 51:2877–2885PubMedCrossRef McDaniel ML, Marshall CA, Pappan KL, Kwon G (2002) Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic beta-cells. Diabetes 51:2877–2885PubMedCrossRef
18.
Zurück zum Zitat Kleijn M, Scheper GC, Voorma HO, Thomas AA (1998) Regulation of translation initiation factors by signal transduction. Eur J Biochem 253:531–544PubMedCrossRef Kleijn M, Scheper GC, Voorma HO, Thomas AA (1998) Regulation of translation initiation factors by signal transduction. Eur J Biochem 253:531–544PubMedCrossRef
19.
Zurück zum Zitat Pipeleers DG, in’t Veld PA, Van de Winkel M, Maes E, Schuit FC, Gepts W (1985) A new in vitro model for the study of pancreatic A and B cells. Endocrinology 117:806–816PubMedCrossRef Pipeleers DG, in’t Veld PA, Van de Winkel M, Maes E, Schuit FC, Gepts W (1985) A new in vitro model for the study of pancreatic A and B cells. Endocrinology 117:806–816PubMedCrossRef
20.
Zurück zum Zitat Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY (2005) Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90:501–506PubMedCrossRef Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY (2005) Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 90:501–506PubMedCrossRef
21.
Zurück zum Zitat Schuit FC, Kiekens R, Pipeleers DG (1991) Measuring the balance between insulin synthesis and insulin release. Biochem Biophys Res Commun 178:1182–1187PubMedCrossRef Schuit FC, Kiekens R, Pipeleers DG (1991) Measuring the balance between insulin synthesis and insulin release. Biochem Biophys Res Commun 178:1182–1187PubMedCrossRef
22.
Zurück zum Zitat Martens GA, Wang Q, Kerckhofs K, Stange G, Ling Z, Pipeleers D (2006) Metabolic activation of glucose low-responsive beta-cells by glyceraldehyde correlates with their biosynthetic activation in lower glucose concentration range but not at high glucose. Endocrinology 147:5196–5204PubMedCrossRef Martens GA, Wang Q, Kerckhofs K, Stange G, Ling Z, Pipeleers D (2006) Metabolic activation of glucose low-responsive beta-cells by glyceraldehyde correlates with their biosynthetic activation in lower glucose concentration range but not at high glucose. Endocrinology 147:5196–5204PubMedCrossRef
23.
Zurück zum Zitat Lehtihet M, Welsh N, Berggren PO, Cook GA, Sjoholm A (2003) Glibenclamide inhibits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis. Am J Physiol Endocrinol Metab 285:E438–E446PubMed Lehtihet M, Welsh N, Berggren PO, Cook GA, Sjoholm A (2003) Glibenclamide inhibits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis. Am J Physiol Endocrinol Metab 285:E438–E446PubMed
24.
Zurück zum Zitat Ball AJ, McCluskey JT, Flatt PR, McClenaghan NH (2004) Chronic exposure to tolbutamide and glibenclamide impairs insulin secretion but not transcription of K(ATP) channel components. Pharmacol Res 50:41–46PubMedCrossRef Ball AJ, McCluskey JT, Flatt PR, McClenaghan NH (2004) Chronic exposure to tolbutamide and glibenclamide impairs insulin secretion but not transcription of K(ATP) channel components. Pharmacol Res 50:41–46PubMedCrossRef
25.
Zurück zum Zitat Shi H, Moustaid-Moussa N, Wilkison WO, Zemel MB (1999) Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J 13:1833–1838PubMed Shi H, Moustaid-Moussa N, Wilkison WO, Zemel MB (1999) Role of the sulfonylurea receptor in regulating human adipocyte metabolism. FASEB J 13:1833–1838PubMed
26.
Zurück zum Zitat Jaber LA, Antal EJ, Slaughter RL, Welshman IR (1994) Comparison of pharmacokinetics and pharmacodynamics of short- and long-term glyburide therapy in NIDDM. Diabetes Care 17:1300–1306PubMedCrossRef Jaber LA, Antal EJ, Slaughter RL, Welshman IR (1994) Comparison of pharmacokinetics and pharmacodynamics of short- and long-term glyburide therapy in NIDDM. Diabetes Care 17:1300–1306PubMedCrossRef
27.
Zurück zum Zitat Rydberg T, Jonsson A, Karlsson MO, Melander A (1997) Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 43:373–381PubMedCrossRef Rydberg T, Jonsson A, Karlsson MO, Melander A (1997) Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 43:373–381PubMedCrossRef
28.
Zurück zum Zitat Proks P, Reimann F, Green N, Gribble F, Ashcroft F (2002) Sulfonylurea stimulation of insulin secretion. Diabetes 51(Suppl 3):S368–S376PubMedCrossRef Proks P, Reimann F, Green N, Gribble F, Ashcroft F (2002) Sulfonylurea stimulation of insulin secretion. Diabetes 51(Suppl 3):S368–S376PubMedCrossRef
29.
Zurück zum Zitat Sturgess NC, Ashford ML, Cook DL, Hales CN (1985) The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2:474–475PubMedCrossRef Sturgess NC, Ashford ML, Cook DL, Hales CN (1985) The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2:474–475PubMedCrossRef
30.
Zurück zum Zitat Anello M, Gilon P, Henquin JC (1999) Alterations of insulin secretion from mouse islets treated with sulphonylureas: perturbations of Ca2+ regulation prevail over changes in insulin content. Br J Pharmacol 127:1883–1891PubMedCrossRef Anello M, Gilon P, Henquin JC (1999) Alterations of insulin secretion from mouse islets treated with sulphonylureas: perturbations of Ca2+ regulation prevail over changes in insulin content. Br J Pharmacol 127:1883–1891PubMedCrossRef
31.
Zurück zum Zitat Ballou LM, Jiang YP, Du G, Frohman MA, Lin RZ (2003) Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Lett 550:51–56PubMedCrossRef Ballou LM, Jiang YP, Du G, Frohman MA, Lin RZ (2003) Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Lett 550:51–56PubMedCrossRef
32.
Zurück zum Zitat Hui AS, Bauer AL, Striet JB, Schnell PO, Czyzyk-Krzeska MF (2006) Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J 20:466–475PubMedCrossRef Hui AS, Bauer AL, Striet JB, Schnell PO, Czyzyk-Krzeska MF (2006) Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J 20:466–475PubMedCrossRef
33.
Zurück zum Zitat Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396:584–587PubMedCrossRef Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396:584–587PubMedCrossRef
34.
Zurück zum Zitat Avruch J, Lin Y, Long X, Murthy S, Ortiz-Vega S (2005) Recent advances in the regulation of the TOR pathway by insulin and nutrients. Curr Opin Clin Nutr Metab Care 8:67–72PubMedCrossRef Avruch J, Lin Y, Long X, Murthy S, Ortiz-Vega S (2005) Recent advances in the regulation of the TOR pathway by insulin and nutrients. Curr Opin Clin Nutr Metab Care 8:67–72PubMedCrossRef
35.
Zurück zum Zitat Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16:797–803PubMedCrossRef Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16:797–803PubMedCrossRef
36.
Zurück zum Zitat Lang CH, Frost RA (2007) Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha. Metabolism 56:49–57PubMedCrossRef Lang CH, Frost RA (2007) Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha. Metabolism 56:49–57PubMedCrossRef
37.
Zurück zum Zitat Gomez E, Powell ML, Greenman IC, Herbert TP (2004) Glucose-stimulated protein synthesis in pancreatic beta-cells parallels an increase in the availability of the translational ternary complex (eIF2-GTP.Met-tRNAi) and the dephosphorylation of eIF2 alpha. J Biol Chem 279:53937–53946PubMedCrossRef Gomez E, Powell ML, Greenman IC, Herbert TP (2004) Glucose-stimulated protein synthesis in pancreatic beta-cells parallels an increase in the availability of the translational ternary complex (eIF2-GTP.Met-tRNAi) and the dephosphorylation of eIF2 alpha. J Biol Chem 279:53937–53946PubMedCrossRef
38.
Zurück zum Zitat Redpath NT, Price NT, Severinov KV, Proud CG (1993) Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 213:689–699PubMedCrossRef Redpath NT, Price NT, Severinov KV, Proud CG (1993) Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem 213:689–699PubMedCrossRef
39.
Zurück zum Zitat Diggle TA, Redpath NT, Heesom KJ, Denton RM (1998) Regulation of protein-synthesis elongation-factor-2 kinase by cAMP in adipocytes. Biochem J 336(Pt 3):525–529PubMed Diggle TA, Redpath NT, Heesom KJ, Denton RM (1998) Regulation of protein-synthesis elongation-factor-2 kinase by cAMP in adipocytes. Biochem J 336(Pt 3):525–529PubMed
40.
Zurück zum Zitat Hovland R, Eikhom TS, Proud CG et al (1999) cAMP inhibits translation by inducing Ca2+/calmodulin-independent elongation factor 2 kinase activity in IPC-81 cells. FEBS Lett 444:97–101PubMedCrossRef Hovland R, Eikhom TS, Proud CG et al (1999) cAMP inhibits translation by inducing Ca2+/calmodulin-independent elongation factor 2 kinase activity in IPC-81 cells. FEBS Lett 444:97–101PubMedCrossRef
41.
Zurück zum Zitat Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18:451–463PubMedCrossRef Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev 18:451–463PubMedCrossRef
42.
Zurück zum Zitat Nesher R, Anteby E, Yedovizky M, Warwar N, Kaiser N, Cerasi E (2002) Beta-cell protein kinases and the dynamics of the insulin response to glucose. Diabetes 51(Suppl 1):S68–S73PubMedCrossRef Nesher R, Anteby E, Yedovizky M, Warwar N, Kaiser N, Cerasi E (2002) Beta-cell protein kinases and the dynamics of the insulin response to glucose. Diabetes 51(Suppl 1):S68–S73PubMedCrossRef
43.
Zurück zum Zitat Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedCrossRef Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedCrossRef
44.
Zurück zum Zitat Wang X, Flynn A, Waskiewicz AJ et al (1998) The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 273:9373–9377PubMedCrossRef Wang X, Flynn A, Waskiewicz AJ et al (1998) The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J Biol Chem 273:9373–9377PubMedCrossRef
45.
Zurück zum Zitat Banko JL, Hou L, Klann E (2004) NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1. J Neurochem 91:462–470PubMedCrossRef Banko JL, Hou L, Klann E (2004) NMDA receptor activation results in PKA- and ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1. J Neurochem 91:462–470PubMedCrossRef
46.
Zurück zum Zitat Itoh N, Okamoto H (1980) Translational control of proinsulin synthesis by glucose. Nature 283:100–102PubMedCrossRef Itoh N, Okamoto H (1980) Translational control of proinsulin synthesis by glucose. Nature 283:100–102PubMedCrossRef
47.
Zurück zum Zitat Yan L, Nairn AC, Palfrey HC, Brady MJ (2003) Glucose regulates EF-2 phosphorylation and protein translation by a protein phosphatase-2A-dependent mechanism in INS-1-derived 832/13 cells. J Biol Chem 278:18177–18183PubMedCrossRef Yan L, Nairn AC, Palfrey HC, Brady MJ (2003) Glucose regulates EF-2 phosphorylation and protein translation by a protein phosphatase-2A-dependent mechanism in INS-1-derived 832/13 cells. J Biol Chem 278:18177–18183PubMedCrossRef
48.
Zurück zum Zitat Alarcon C, Wicksteed B, Rhodes CJ (2006) Exendin 4 controls insulin production in rat islet beta cells predominantly by potentiation of glucose-stimulated proinsulin biosynthesis at the translational level. Diabetologia 49:2920–2929PubMedCrossRef Alarcon C, Wicksteed B, Rhodes CJ (2006) Exendin 4 controls insulin production in rat islet beta cells predominantly by potentiation of glucose-stimulated proinsulin biosynthesis at the translational level. Diabetologia 49:2920–2929PubMedCrossRef
49.
Zurück zum Zitat Schatz H, Maier V, Hinz M, Nierle C, Pfeiffer EF (1972) The effect of tolbutamide and glibenclamide on the incorporation of (3 H)leucine and on the conversion of proinsulin to insulin in isolated pancreatic islets. FEBS Lett 26:237–240PubMedCrossRef Schatz H, Maier V, Hinz M, Nierle C, Pfeiffer EF (1972) The effect of tolbutamide and glibenclamide on the incorporation of (3 H)leucine and on the conversion of proinsulin to insulin in isolated pancreatic islets. FEBS Lett 26:237–240PubMedCrossRef
50.
Zurück zum Zitat Gorus FK, Schuit FC, In’t Veld PA, Gepts W, Pipeleers DG (1988) Interaction of sulfonylureas with pancreatic beta-cells. A study with glyburide. Diabetes 37:1090–1095PubMedCrossRef Gorus FK, Schuit FC, In’t Veld PA, Gepts W, Pipeleers DG (1988) Interaction of sulfonylureas with pancreatic beta-cells. A study with glyburide. Diabetes 37:1090–1095PubMedCrossRef
Metadaten
Titel
Glibenclamide activates translation in rat pancreatic beta cells through calcium-dependent mTOR, PKA and MEK signalling pathways
verfasst von
Q. Wang
H. Heimberg
D. Pipeleers
Z. Ling
Publikationsdatum
01.07.2008
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 7/2008
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-008-1026-8

Weitere Artikel der Ausgabe 7/2008

Diabetologia 7/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.