Skip to main content
Erschienen in: Diabetologia 2/2009

01.02.2009 | Article

A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis

verfasst von: M. Fex, G. Haemmerle, N. Wierup, M. Dekker-Nitert, M. Rehn, M. Ristow, R. Zechner, F. Sundler, C. Holm, L. Eliasson, H. Mulder

Erschienen in: Diabetologia | Ausgabe 2/2009

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The enzyme hormone-sensitive lipase (HSL) is produced and is active in pancreatic beta cells. Because lipids are known to play a crucial role in normal control of insulin release and in the deterioration of beta cell function, as observed in type 2 diabetes, actions of HSL in beta cells may be critical. This notion has been addressed in different lines of HSL knockout mice with contradictory results.

Methods

To resolve this, we created a transgenic mouse lacking HSL specifically in beta cells, and characterised this model with regard to glucose metabolism and insulin secretion, using both in vivo and in vitro methods.

Results

We found that fasting basal plasma glucose levels were significantly elevated in mice lacking HSL in beta cells. An IVGTT at 12 weeks revealed a blunting of the initial insulin response to glucose with delayed elimination of the sugar. Additionally, arginine-stimulated insulin secretion was markedly diminished in vivo. Investigation of the exocytotic response in single HSL-deficient beta cells showed an impaired response to depolarisation of the plasma membrane. Beta cell mass and islet insulin content were increased, suggesting a compensatory mechanism, by which beta cells lacking HSL strive to maintain normoglycaemia.

Conclusions/interpretation

Based on these results, we suggest that HSL, which is located in close proximity of the secretory granules, may serve as provider of a lipid-derived signal essential for normal insulin secretion.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Prentki M, Corkey BE (1996) Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273–283PubMedCrossRef Prentki M, Corkey BE (1996) Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273–283PubMedCrossRef
2.
Zurück zum Zitat Vaughan M, Berger JE, Steinberg D (1964) Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239:401–409PubMed Vaughan M, Berger JE, Steinberg D (1964) Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239:401–409PubMed
3.
Zurück zum Zitat Yeaman SJ (2004) Hormone-sensitive lipase—new roles for an old enzyme. Biochem J 379:11–22PubMedCrossRef Yeaman SJ (2004) Hormone-sensitive lipase—new roles for an old enzyme. Biochem J 379:11–22PubMedCrossRef
4.
Zurück zum Zitat Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393PubMedCrossRef Holm C, Osterlund T, Laurell H, Contreras JA (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393PubMedCrossRef
5.
Zurück zum Zitat Mulder H, Holst LS, Svensson H et al (1999) Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. Diabetes 48:228–232PubMedCrossRef Mulder H, Holst LS, Svensson H et al (1999) Hormone-sensitive lipase, the rate-limiting enzyme in triglyceride hydrolysis, is expressed and active in beta-cells. Diabetes 48:228–232PubMedCrossRef
6.
Zurück zum Zitat Corkey BE, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M (1989) A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. J Biol Chem 264:21608–21612PubMed Corkey BE, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M (1989) A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic beta-cells. J Biol Chem 264:21608–21612PubMed
7.
Zurück zum Zitat Deeney JT, Gromada J, Hoy M et al (2000) Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem 275:9363–9368PubMedCrossRef Deeney JT, Gromada J, Hoy M et al (2000) Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem 275:9363–9368PubMedCrossRef
8.
Zurück zum Zitat Hu L, Deeney JT, Nolan CJ et al (2005) Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes. Am J Physiol Endocrinol Metab 289:E1085–E1092PubMedCrossRef Hu L, Deeney JT, Nolan CJ et al (2005) Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes. Am J Physiol Endocrinol Metab 289:E1085–E1092PubMedCrossRef
9.
Zurück zum Zitat Kanehara H, Suzuki J, Zenimaru Y et al (2004) Function of hormone-sensitive lipase in diacylglycerol-protein kinase C pathway. Diabetes Res Clin Pract 65:209–215PubMedCrossRef Kanehara H, Suzuki J, Zenimaru Y et al (2004) Function of hormone-sensitive lipase in diacylglycerol-protein kinase C pathway. Diabetes Res Clin Pract 65:209–215PubMedCrossRef
10.
Zurück zum Zitat Yaney GC, Korchak HM, Corkey BE (2000) Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal beta-cells. Endocrinology 141:1989–1998PubMedCrossRef Yaney GC, Korchak HM, Corkey BE (2000) Long-chain acyl CoA regulation of protein kinase C and fatty acid potentiation of glucose-stimulated insulin secretion in clonal beta-cells. Endocrinology 141:1989–1998PubMedCrossRef
11.
Zurück zum Zitat Olofsson CS, Salehi A, Holm C, Rorsman P (2004) Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells. J Physiol 557:935–948PubMedCrossRef Olofsson CS, Salehi A, Holm C, Rorsman P (2004) Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells. J Physiol 557:935–948PubMedCrossRef
12.
Zurück zum Zitat Branstrom R, Leibiger IB, Leibiger B et al (2007) Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif. Diabetologia 50:1670–1677PubMedCrossRef Branstrom R, Leibiger IB, Leibiger B et al (2007) Single residue (K332A) substitution in Kir6.2 abolishes the stimulatory effect of long-chain acyl-CoA esters: indications for a long-chain acyl-CoA ester binding motif. Diabetologia 50:1670–1677PubMedCrossRef
13.
Zurück zum Zitat Mulder H, Yang S, Winzell MS, Holm C, Ahren B (2004) Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53:122–128PubMedCrossRef Mulder H, Yang S, Winzell MS, Holm C, Ahren B (2004) Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53:122–128PubMedCrossRef
14.
Zurück zum Zitat Claus TH, Lowe DB, Liang Y et al (2005) Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. J Pharmacol Exp Ther 315:1396–1402PubMedCrossRef Claus TH, Lowe DB, Liang Y et al (2005) Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose. J Pharmacol Exp Ther 315:1396–1402PubMedCrossRef
15.
Zurück zum Zitat Sorhede Winzell M, Ahren B (2004) Glucagon-like peptide-1 and islet lipolysis. Horm Metab Res 36:795–803PubMedCrossRef Sorhede Winzell M, Ahren B (2004) Glucagon-like peptide-1 and islet lipolysis. Horm Metab Res 36:795–803PubMedCrossRef
16.
Zurück zum Zitat Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG (2001) Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50:1771–1777PubMedCrossRef Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG (2001) Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50:1771–1777PubMedCrossRef
17.
Zurück zum Zitat Unger RH, Orci L (2000) Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord 24(Suppl 4):S28–S32PubMed Unger RH, Orci L (2000) Lipotoxic diseases of nonadipose tissues in obesity. Int J Obes Relat Metab Disord 24(Suppl 4):S28–S32PubMed
18.
Zurück zum Zitat Osuga J, Ishibashi S, Oka T et al (2000) Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A 97:787–792PubMedCrossRef Osuga J, Ishibashi S, Oka T et al (2000) Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A 97:787–792PubMedCrossRef
19.
Zurück zum Zitat Wang SP, Laurin N, Himms-Hagen J et al (2001) The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res 9:119–128PubMedCrossRef Wang SP, Laurin N, Himms-Hagen J et al (2001) The adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes Res 9:119–128PubMedCrossRef
20.
Zurück zum Zitat Haemmerle G, Zimmermann R, Hayn M et al (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–4815PubMedCrossRef Haemmerle G, Zimmermann R, Hayn M et al (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–4815PubMedCrossRef
21.
Zurück zum Zitat Mulder H, Sorhede-Winzell M, Contreras JA et al (2003) Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact. J Biol Chem 278:36380–36388PubMedCrossRef Mulder H, Sorhede-Winzell M, Contreras JA et al (2003) Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact. J Biol Chem 278:36380–36388PubMedCrossRef
22.
Zurück zum Zitat Chung S, Wang SP, Pan L, Mitchell G, Trasler J, Hermo L (2001) Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 142:4272–4281PubMedCrossRef Chung S, Wang SP, Pan L, Mitchell G, Trasler J, Hermo L (2001) Infertility and testicular defects in hormone-sensitive lipase-deficient mice. Endocrinology 142:4272–4281PubMedCrossRef
23.
Zurück zum Zitat Wang SP, Chung S, Soni K et al (2004) Expression of human hormone-sensitive lipase (HSL) in postmeiotic germ cells confers normal fertility to HSL-deficient mice. Endocrinology 145:5688–5693PubMedCrossRef Wang SP, Chung S, Soni K et al (2004) Expression of human hormone-sensitive lipase (HSL) in postmeiotic germ cells confers normal fertility to HSL-deficient mice. Endocrinology 145:5688–5693PubMedCrossRef
24.
Zurück zum Zitat Harada K, Shen WJ, Patel S et al (2003) Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice. Am J Physiol Endocrinol Metab 285:E1182–1195PubMed Harada K, Shen WJ, Patel S et al (2003) Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice. Am J Physiol Endocrinol Metab 285:E1182–1195PubMed
25.
Zurück zum Zitat Park SY, Kim HJ, Wang S et al (2005) Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab 289:E30–E39PubMedCrossRef Park SY, Kim HJ, Wang S et al (2005) Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab 289:E30–E39PubMedCrossRef
26.
Zurück zum Zitat Fex M, Olofsson CS, Fransson U et al (2004) Hormone-sensitive lipase deficiency in mouse islets abolishes neutral cholesterol ester hydrolase activity but leaves lipolysis, acylglycerides, fat oxidation, and insulin secretion intact. Endocrinology 145:3746–3753PubMedCrossRef Fex M, Olofsson CS, Fransson U et al (2004) Hormone-sensitive lipase deficiency in mouse islets abolishes neutral cholesterol ester hydrolase activity but leaves lipolysis, acylglycerides, fat oxidation, and insulin secretion intact. Endocrinology 145:3746–3753PubMedCrossRef
27.
Zurück zum Zitat Roduit R, Masiello P, Wang SP, Li H, Mitchell GA, Prentki M (2001) A role for hormone-sensitive lipase in glucose-stimulated insulin secretion: a study in hormone-sensitive lipase-deficient mice. Diabetes 50:1970–1975PubMedCrossRef Roduit R, Masiello P, Wang SP, Li H, Mitchell GA, Prentki M (2001) A role for hormone-sensitive lipase in glucose-stimulated insulin secretion: a study in hormone-sensitive lipase-deficient mice. Diabetes 50:1970–1975PubMedCrossRef
28.
Zurück zum Zitat Peyot ML, Nolan CJ, Soni K et al (2004) Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 53:1733–1742PubMedCrossRef Peyot ML, Nolan CJ, Soni K et al (2004) Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 53:1733–1742PubMedCrossRef
29.
Zurück zum Zitat Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386PubMedCrossRef Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386PubMedCrossRef
30.
Zurück zum Zitat Fex M, Lucas S, Sörhede Winzell M, Ahrén B, Holm C, Mulder H (2006) Beta-cell lipases and insulin secretion. Diabetes 55:S24–S31CrossRef Fex M, Lucas S, Sörhede Winzell M, Ahrén B, Holm C, Mulder H (2006) Beta-cell lipases and insulin secretion. Diabetes 55:S24–S31CrossRef
31.
Zurück zum Zitat Gannon M, Shiota C, Postic C, Wright CV, Magnuson M (2000) Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis 26:139–142PubMedCrossRef Gannon M, Shiota C, Postic C, Wright CV, Magnuson M (2000) Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis 26:139–142PubMedCrossRef
32.
Zurück zum Zitat Ristow M, Mulder H, Pomplun D et al (2003) Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass. J Clin Invest 112:527–534PubMed Ristow M, Mulder H, Pomplun D et al (2003) Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass. J Clin Invest 112:527–534PubMed
33.
Zurück zum Zitat Fex M, Wierup N, Nitert MD, Ristow M, Mulder H (2007) Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance. J Endocrinol 194:551–555PubMedCrossRef Fex M, Wierup N, Nitert MD, Ristow M, Mulder H (2007) Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance. J Endocrinol 194:551–555PubMedCrossRef
34.
Zurück zum Zitat Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510PubMedCrossRef Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510PubMedCrossRef
35.
Zurück zum Zitat Fex M, Nitert MD, Wierup N, Sundler F, Ling C, Mulder H (2007) Enhanced mitochondrial metabolism may account for the adaptation to insulin resistance in islets from C57BL/6J mice fed a high-fat diet. Diabetologia 50:74–83PubMedCrossRef Fex M, Nitert MD, Wierup N, Sundler F, Ling C, Mulder H (2007) Enhanced mitochondrial metabolism may account for the adaptation to insulin resistance in islets from C57BL/6J mice fed a high-fat diet. Diabetologia 50:74–83PubMedCrossRef
36.
Zurück zum Zitat Brommage R (2003) Validation and calibration of DEXA body composition in mice. Am J Physiol Endocrinol Metab 285:E454–E459PubMed Brommage R (2003) Validation and calibration of DEXA body composition in mice. Am J Physiol Endocrinol Metab 285:E454–E459PubMed
37.
Zurück zum Zitat Elks ML (1993) Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release. Endocrinology 133:208–214PubMedCrossRef Elks ML (1993) Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release. Endocrinology 133:208–214PubMedCrossRef
38.
Zurück zum Zitat Kashima Y, Miki T, Shibasaki T et al (2001) Critical role of cAMP-GEFII–Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053PubMedCrossRef Kashima Y, Miki T, Shibasaki T et al (2001) Critical role of cAMP-GEFII–Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 276:46046–46053PubMedCrossRef
39.
Zurück zum Zitat Ammala C, Eliasson L, Bokvist K, Larsson O, Ashcroft FM, Rorsman P (1993) Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. J Physiol 472:665–688PubMed Ammala C, Eliasson L, Bokvist K, Larsson O, Ashcroft FM, Rorsman P (1993) Exocytosis elicited by action potentials and voltage-clamp calcium currents in individual mouse pancreatic B-cells. J Physiol 472:665–688PubMed
40.
Zurück zum Zitat Ceddia RB, William WN Jr, Curi R (1999) Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: evidence for an effect of leptin on glucose uptake and decarboxylation. Int J Obes Relat Metab Disord 23:75–82PubMedCrossRef Ceddia RB, William WN Jr, Curi R (1999) Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: evidence for an effect of leptin on glucose uptake and decarboxylation. Int J Obes Relat Metab Disord 23:75–82PubMedCrossRef
41.
Zurück zum Zitat Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946PubMedCrossRef Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946PubMedCrossRef
42.
Zurück zum Zitat Masiello P, Novelli M, Bombara M et al (2002) The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metabolism 51:110–114PubMedCrossRef Masiello P, Novelli M, Bombara M et al (2002) The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets. Metabolism 51:110–114PubMedCrossRef
43.
Zurück zum Zitat Okazaki H, Osuga J, Tamura Y et al (2002) Lipolysis in the absence of hormone-sensitive lipase: evidence for a common mechanism regulating distinct lipases. Diabetes 51:3368–3375PubMedCrossRef Okazaki H, Osuga J, Tamura Y et al (2002) Lipolysis in the absence of hormone-sensitive lipase: evidence for a common mechanism regulating distinct lipases. Diabetes 51:3368–3375PubMedCrossRef
44.
Zurück zum Zitat Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075PubMedCrossRef Villena JA, Roy S, Sarkadi-Nagy E, Kim KH, Sul HS (2004) Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem 279:47066–47075PubMedCrossRef
45.
Zurück zum Zitat Lindvall H, Nevsten P, Strom K et al (2004) A novel hormone-sensitive lipase isoform expressed in pancreatic beta-cells. J Biol Chem 279:3828–3836PubMedCrossRef Lindvall H, Nevsten P, Strom K et al (2004) A novel hormone-sensitive lipase isoform expressed in pancreatic beta-cells. J Biol Chem 279:3828–3836PubMedCrossRef
46.
Zurück zum Zitat Masiello P (2006) Animal models of type 2 diabetes with reduced pancreatic beta-cell mass. Int J Biochem Cell Biol 38:873–893PubMedCrossRef Masiello P (2006) Animal models of type 2 diabetes with reduced pancreatic beta-cell mass. Int J Biochem Cell Biol 38:873–893PubMedCrossRef
47.
Zurück zum Zitat Cnop M, Landchild MJ, Vidal J et al (2002) The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations : distinct metabolic effects of two fat compartments. Diabetes 51:1005–1015PubMedCrossRef Cnop M, Landchild MJ, Vidal J et al (2002) The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations : distinct metabolic effects of two fat compartments. Diabetes 51:1005–1015PubMedCrossRef
48.
Zurück zum Zitat Lee JY, Ristow M, Lin X, White MF, Magnuson MA, Hennighausen L (2006) RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281:2649–2653PubMedCrossRef Lee JY, Ristow M, Lin X, White MF, Magnuson MA, Hennighausen L (2006) RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281:2649–2653PubMedCrossRef
49.
Zurück zum Zitat Sekiya M, Osuga J, Okazaki H et al (2004) Absence of hormone-sensitive lipase inhibits obesity and adipogenesis in Lep ob/ob mice. J Biol Chem 279:15084–15090PubMedCrossRef Sekiya M, Osuga J, Okazaki H et al (2004) Absence of hormone-sensitive lipase inhibits obesity and adipogenesis in Lep ob/ob mice. J Biol Chem 279:15084–15090PubMedCrossRef
Metadaten
Titel
A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis
verfasst von
M. Fex
G. Haemmerle
N. Wierup
M. Dekker-Nitert
M. Rehn
M. Ristow
R. Zechner
F. Sundler
C. Holm
L. Eliasson
H. Mulder
Publikationsdatum
01.02.2009
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 2/2009
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-008-1191-9

Weitere Artikel der Ausgabe 2/2009

Diabetologia 2/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.