Skip to main content
Erschienen in: Diabetologia 5/2009

01.05.2009 | Review

The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action

verfasst von: E. J. Barrett, E. M. Eggleston, A. C. Inyard, H. Wang, G. Li, W. Chai, Z. Liu

Erschienen in: Diabetologia | Ausgabe 5/2009

Einloggen, um Zugang zu erhalten

Abstract

Evidence suggests that insulin delivery to skeletal muscle interstitium is the rate-limiting step in insulin-stimulated muscle glucose uptake and that this process is impaired by insulin resistance. In this review we examine the basis for the hypothesis that insulin acts on the vasculature at three discrete steps to enhance its own delivery to muscle: (1) relaxation of resistance vessels to increase total blood flow; (2) relaxation of pre-capillary arterioles to increase the microvascular exchange surface perfused within skeletal muscle (microvascular recruitment); and (3) the trans-endothelial transport (TET) of insulin. Insulin can relax resistance vessels and increase blood flow to skeletal muscle. However, there is controversy as to whether this occurs at physiological concentrations of, and exposure times to, insulin. The microvasculature is recruited more quickly and at lower insulin concentrations than are needed to increase total blood flow, a finding consistent with a physiological role for insulin in muscle insulin delivery. Microvascular recruitment is impaired by obesity, diabetes and nitric oxide synthase inhibitors. Insulin TET is a third potential site for regulating insulin delivery. This is underscored by the consistent finding that steady-state insulin concentrations in plasma are approximately twice those in muscle interstitium. Recent in vivo and in vitro findings suggest that insulin traverses the vascular endothelium via a trans-cellular, receptor-mediated pathway, and emerging data indicate that insulin acts on the endothelium to facilitate its own TET. Thus, muscle insulin delivery, which is rate-limiting for its metabolic action, is itself regulated by insulin at multiple steps. These findings highlight the need to further understand the role of the vascular actions of insulin in metabolic regulation.
Literatur
1.
Zurück zum Zitat Sherwin RS, Kramer KJ, Tobin JD et al (1974) A model of the kinetics of insulin in man. J Clin Invest 53:1481–1492PubMedCrossRef Sherwin RS, Kramer KJ, Tobin JD et al (1974) A model of the kinetics of insulin in man. J Clin Invest 53:1481–1492PubMedCrossRef
2.
Zurück zum Zitat McGuire EA, Tobin JD, Berman M, Andres R (1979) Kinetics of native insulin in diabetic, obese, and aged men. Diabetes 28:110–120PubMedCrossRef McGuire EA, Tobin JD, Berman M, Andres R (1979) Kinetics of native insulin in diabetic, obese, and aged men. Diabetes 28:110–120PubMedCrossRef
3.
Zurück zum Zitat DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique, a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223PubMed DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique, a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–E223PubMed
4.
Zurück zum Zitat Holmang A, Bjorntorp P, Rippe B (1992) Tissue uptake of insulin and inulin in red and white skeletal muscle in vivo. Am J Physiol 263:H1170–H1176PubMed Holmang A, Bjorntorp P, Rippe B (1992) Tissue uptake of insulin and inulin in red and white skeletal muscle in vivo. Am J Physiol 263:H1170–H1176PubMed
5.
Zurück zum Zitat Turk D, Alzaid A, Dinneen S, Nair KS, Rizza R (1995) The effects of non-insulin-dependent diabetes mellitus on the kinetics of onset of insulin action in hepatic and extrahepatic tissues. J Clin Invest 95:755–762PubMedCrossRef Turk D, Alzaid A, Dinneen S, Nair KS, Rizza R (1995) The effects of non-insulin-dependent diabetes mellitus on the kinetics of onset of insulin action in hepatic and extrahepatic tissues. J Clin Invest 95:755–762PubMedCrossRef
6.
Zurück zum Zitat Prager R, Wallace P, Olefsky JM (1986) In vivo kinetics of insulin action on peripheral glucose disposal and hepatic glucose output in normal and obese subjects. J Clin Invest 78:472–481PubMedCrossRef Prager R, Wallace P, Olefsky JM (1986) In vivo kinetics of insulin action on peripheral glucose disposal and hepatic glucose output in normal and obese subjects. J Clin Invest 78:472–481PubMedCrossRef
7.
Zurück zum Zitat DeFronzo R, Gunnarsson R, Ojorkman O, Olsson M, Wahren J (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 76:149–155PubMedCrossRef DeFronzo R, Gunnarsson R, Ojorkman O, Olsson M, Wahren J (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 76:149–155PubMedCrossRef
8.
Zurück zum Zitat Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190PubMedCrossRef Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190PubMedCrossRef
9.
Zurück zum Zitat Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedCrossRef Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedCrossRef
10.
Zurück zum Zitat Ogihara T, Shin B-C, Anai M et al (1997) Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-1 via its association with phosphatidylinositol 3-kinase in skeletal muscle cells. J Biol Chem 272:12868–12873PubMedCrossRef Ogihara T, Shin B-C, Anai M et al (1997) Insulin receptor substrate (IRS)-2 is dephosphorylated more rapidly than IRS-1 via its association with phosphatidylinositol 3-kinase in skeletal muscle cells. J Biol Chem 272:12868–12873PubMedCrossRef
11.
Zurück zum Zitat Karnieli E, Zarnowski MJ, Hissin PJ, Simpson IA, Salans LB, Cushman SW (1981) Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. Time course, reversal, insulin concentration dependency, and relationship to glucose transport activity. J Biol Chem 256:4772–4777PubMed Karnieli E, Zarnowski MJ, Hissin PJ, Simpson IA, Salans LB, Cushman SW (1981) Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. Time course, reversal, insulin concentration dependency, and relationship to glucose transport activity. J Biol Chem 256:4772–4777PubMed
12.
Zurück zum Zitat Yang YJ, Hope ID, Ader M, Bergman RN (1989) Insulin transport across capillaries is rate limiting for insulin action in dogs. J Clin Invest 84:1620–1628PubMedCrossRef Yang YJ, Hope ID, Ader M, Bergman RN (1989) Insulin transport across capillaries is rate limiting for insulin action in dogs. J Clin Invest 84:1620–1628PubMedCrossRef
13.
Zurück zum Zitat Yang YJ, Hope I, Ader M, Poulin RA, Bergman RN (1992) Dose–response relationship between lymph insulin and glucose uptake reveals enhanced insulin sensitivity of peripheral tissues. Diabetes 41:241–253PubMedCrossRef Yang YJ, Hope I, Ader M, Poulin RA, Bergman RN (1992) Dose–response relationship between lymph insulin and glucose uptake reveals enhanced insulin sensitivity of peripheral tissues. Diabetes 41:241–253PubMedCrossRef
14.
Zurück zum Zitat Poulin RA, Steil GM, Moore DM, Ader M, Bergman RN (1994) Dynamics of glucose production and uptake are more closely related to insulin in hindlimb lymph than in thoracic duct lymph. Diabetes 43:180–190PubMedCrossRef Poulin RA, Steil GM, Moore DM, Ader M, Bergman RN (1994) Dynamics of glucose production and uptake are more closely related to insulin in hindlimb lymph than in thoracic duct lymph. Diabetes 43:180–190PubMedCrossRef
15.
Zurück zum Zitat Miles PD, Levisetti M, Reichart D, Khoursheed M, Moossa AR, Olefsky JM (1995) Kinetics of insulin action in vivo. Identification of rate-limiting steps. Diabetes 44:947–953PubMedCrossRef Miles PD, Levisetti M, Reichart D, Khoursheed M, Moossa AR, Olefsky JM (1995) Kinetics of insulin action in vivo. Identification of rate-limiting steps. Diabetes 44:947–953PubMedCrossRef
16.
Zurück zum Zitat Castillo C, Bogardus C, Bergman R, Thuillez P, Lillioja S (1994) Interstitial insulin concentrations determine glucose uptake rates but not insulin resistance in lean and obese men. J Clin Invest 93:10–16PubMedCrossRef Castillo C, Bogardus C, Bergman R, Thuillez P, Lillioja S (1994) Interstitial insulin concentrations determine glucose uptake rates but not insulin resistance in lean and obese men. J Clin Invest 93:10–16PubMedCrossRef
17.
Zurück zum Zitat Freidenberg GR, Suter S, Henry RR, Nolan J, Reichart D, Olefsky JM (1994) Delayed onset of insulin activation of the insulin receptor kinase in vivo in human skeletal muscle. Diabetes 43:118–126PubMedCrossRef Freidenberg GR, Suter S, Henry RR, Nolan J, Reichart D, Olefsky JM (1994) Delayed onset of insulin activation of the insulin receptor kinase in vivo in human skeletal muscle. Diabetes 43:118–126PubMedCrossRef
18.
Zurück zum Zitat Sjostrand M, Holmang A, Lonnroth P (1999) Measurement of interstitial insulin in human muscle. Am J Physiol 276:E151–E154PubMed Sjostrand M, Holmang A, Lonnroth P (1999) Measurement of interstitial insulin in human muscle. Am J Physiol 276:E151–E154PubMed
19.
Zurück zum Zitat Sjostrand M, Gudbjornsdottir S, Holmang A, Lonn L, Strindberg L, Lonnroth P (2002) Delayed transcapillary transport of insulin to muscle interstitial fluid in obese subjects. Diabetes 51:2742–2748PubMedCrossRef Sjostrand M, Gudbjornsdottir S, Holmang A, Lonn L, Strindberg L, Lonnroth P (2002) Delayed transcapillary transport of insulin to muscle interstitial fluid in obese subjects. Diabetes 51:2742–2748PubMedCrossRef
20.
Zurück zum Zitat Herkner H, Klein N, Joukhadar C et al (2003) Transcapillary insulin transfer in human skeletal muscle. Eur J Clin Invest 33:141–146PubMedCrossRef Herkner H, Klein N, Joukhadar C et al (2003) Transcapillary insulin transfer in human skeletal muscle. Eur J Clin Invest 33:141–146PubMedCrossRef
21.
Zurück zum Zitat Gudbjornsdottir S, Sjostrand M, Strindberg L, Wahren J, Lonnroth P (2003) Direct measurements of the permeability surface area for insulin and glucose in human skeletal muscle. J Clin Endocrinol Metab 88:4559–4564PubMedCrossRef Gudbjornsdottir S, Sjostrand M, Strindberg L, Wahren J, Lonnroth P (2003) Direct measurements of the permeability surface area for insulin and glucose in human skeletal muscle. J Clin Endocrinol Metab 88:4559–4564PubMedCrossRef
22.
Zurück zum Zitat Holmang A, Mimura K, Bjorntorp P, Lonnroth P (1997) Interstitial muscle insulin and glucose levels in normal and insulin-resistant Zucker rats. Diabetes 46:1799–1804PubMedCrossRef Holmang A, Mimura K, Bjorntorp P, Lonnroth P (1997) Interstitial muscle insulin and glucose levels in normal and insulin-resistant Zucker rats. Diabetes 46:1799–1804PubMedCrossRef
23.
Zurück zum Zitat Anderson C, Andersson T, Wardell K (1994) Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J Invest Dermatol 102:807–811PubMedCrossRef Anderson C, Andersson T, Wardell K (1994) Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J Invest Dermatol 102:807–811PubMedCrossRef
24.
Zurück zum Zitat Kalant N, Leibovici T, Rohan I, Ozaki S (1979) Interrelationships of glucose and insulin uptake by muscle of normal and diabetic man. Evidence of a difference in metabolism of endogenous and exogenous insulin. Diabetologia 16:365–372PubMedCrossRef Kalant N, Leibovici T, Rohan I, Ozaki S (1979) Interrelationships of glucose and insulin uptake by muscle of normal and diabetic man. Evidence of a difference in metabolism of endogenous and exogenous insulin. Diabetologia 16:365–372PubMedCrossRef
25.
Zurück zum Zitat Eggleston EM, Jahn LA, Barrett EJ (2007) Hyperinsulinaemia rapidly increases human muscle microvascular perfusion but fails to increase muscle insulin clearance: evidence that a saturable process mediates muscle insulin uptake. Diabetes 56:2958–2963PubMedCrossRef Eggleston EM, Jahn LA, Barrett EJ (2007) Hyperinsulinaemia rapidly increases human muscle microvascular perfusion but fails to increase muscle insulin clearance: evidence that a saturable process mediates muscle insulin uptake. Diabetes 56:2958–2963PubMedCrossRef
26.
Zurück zum Zitat Renkin EM, Wiig H (1994) Limits to steady-state lymph flow rates derived from plasma-to-tissue uptake measurements. Microvasc Res 47:318–328PubMedCrossRef Renkin EM, Wiig H (1994) Limits to steady-state lymph flow rates derived from plasma-to-tissue uptake measurements. Microvasc Res 47:318–328PubMedCrossRef
27.
Zurück zum Zitat Dernovsek KD, Bar RS (1985) Processing of cell-bound insulin by capillary and macrovascular endothelial cells in culture. Am J Physiol 248:E244–E251PubMed Dernovsek KD, Bar RS (1985) Processing of cell-bound insulin by capillary and macrovascular endothelial cells in culture. Am J Physiol 248:E244–E251PubMed
28.
Zurück zum Zitat Jialal I, King GL, Buchwald S, Kahn CR, Crettaz M (1984) Processing of insulin by bovine endothelial cells in culture. Internalization without degradation. Diabetes 33:794–800PubMedCrossRef Jialal I, King GL, Buchwald S, Kahn CR, Crettaz M (1984) Processing of insulin by bovine endothelial cells in culture. Internalization without degradation. Diabetes 33:794–800PubMedCrossRef
29.
Zurück zum Zitat Baron A (1994) Hemodynamic actions of insulin. Am J Physiol 267:E187–E202PubMed Baron A (1994) Hemodynamic actions of insulin. Am J Physiol 267:E187–E202PubMed
30.
Zurück zum Zitat Baron AD, Laakso M, Brechtel G, Edelman SV (1991) Mechanism of insulin resistance in insulin-dependent diabetes mellitus: a major role for reduced skeletal muscle blood flow. J Clin Endocrinol Metab 73:637–643PubMedCrossRef Baron AD, Laakso M, Brechtel G, Edelman SV (1991) Mechanism of insulin resistance in insulin-dependent diabetes mellitus: a major role for reduced skeletal muscle blood flow. J Clin Endocrinol Metab 73:637–643PubMedCrossRef
31.
Zurück zum Zitat Laakso M, Edelman SV, Brechtel G, Baron AD (1990) Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. J Clin Invest 85:1844–1852PubMedCrossRef Laakso M, Edelman SV, Brechtel G, Baron AD (1990) Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. J Clin Invest 85:1844–1852PubMedCrossRef
32.
Zurück zum Zitat Laakso M, Edelman SV, Brechtel G, Baron AD (1992) Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 41:1076–1083PubMedCrossRef Laakso M, Edelman SV, Brechtel G, Baron AD (1992) Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes 41:1076–1083PubMedCrossRef
33.
Zurück zum Zitat Vollenweider P, Tappy L, Randin D et al (1993) Differential effects of hyperinsulinaemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest 92:147–154PubMedCrossRef Vollenweider P, Tappy L, Randin D et al (1993) Differential effects of hyperinsulinaemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest 92:147–154PubMedCrossRef
34.
Zurück zum Zitat Raitakari M, Knuuti MJ, Ruotsalainen U et al (1995) Insulin increases blood volume in human skeletal muscle: studies using [15O]CO and positron emission tomography. Am J Physiol 269:E1000–E1005PubMed Raitakari M, Knuuti MJ, Ruotsalainen U et al (1995) Insulin increases blood volume in human skeletal muscle: studies using [15O]CO and positron emission tomography. Am J Physiol 269:E1000–E1005PubMed
35.
Zurück zum Zitat Raitakari M, Nuutila P, Knuuti J et al (1997) Effects of insulin on blood flow and volume in skeletal muscle of patients with IDDM: studies using [15O]H2O, [15O]CO, and positron emission tomography. Diabetes 46:2017–2021PubMedCrossRef Raitakari M, Nuutila P, Knuuti J et al (1997) Effects of insulin on blood flow and volume in skeletal muscle of patients with IDDM: studies using [15O]H2O, [15O]CO, and positron emission tomography. Diabetes 46:2017–2021PubMedCrossRef
36.
Zurück zum Zitat Tack CJJ, Ong MKE, Lutterman JA, Smits P (1998) Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance—effects of troglitazone. Diabetologia 41:569–576PubMedCrossRef Tack CJJ, Ong MKE, Lutterman JA, Smits P (1998) Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance—effects of troglitazone. Diabetologia 41:569–576PubMedCrossRef
37.
Zurück zum Zitat Yki-Jarvinen H, Utriainen T (1998) Insulin-induced vasodilatation: physiology or pharmacology. Diabetologia 41:369–379PubMedCrossRef Yki-Jarvinen H, Utriainen T (1998) Insulin-induced vasodilatation: physiology or pharmacology. Diabetologia 41:369–379PubMedCrossRef
38.
Zurück zum Zitat Taddei S, Virdis A, Mattei P, Natali A, Ferrannini E, Salvetti A (1995) Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation 92:2911–2918PubMed Taddei S, Virdis A, Mattei P, Natali A, Ferrannini E, Salvetti A (1995) Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation 92:2911–2918PubMed
39.
Zurück zum Zitat Bonadonna RC, Saccomani MP, Delprato S, Bonora E, Defronzo RA, Cobelli C (1998) Role of tissue-specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. Circulation 98:234–241PubMed Bonadonna RC, Saccomani MP, Delprato S, Bonora E, Defronzo RA, Cobelli C (1998) Role of tissue-specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. Circulation 98:234–241PubMed
40.
Zurück zum Zitat Baron AD, Steinberg H, Brechtel G, Johnson A (1994) Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol 266:E248–E253PubMed Baron AD, Steinberg H, Brechtel G, Johnson A (1994) Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol 266:E248–E253PubMed
41.
Zurück zum Zitat Steinberg HO, Brechtel G, Johnson A, Fineberg F, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent: a novel action of insulin to increase nitric oxide release. J Clin Invest 94:1172–1179PubMedCrossRef Steinberg HO, Brechtel G, Johnson A, Fineberg F, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent: a novel action of insulin to increase nitric oxide release. J Clin Invest 94:1172–1179PubMedCrossRef
42.
Zurück zum Zitat Baron AD, Brechtel-Hook G, Johnson A, Cronin J, Leaming R, Steinberg HO (1996) Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake. Am J Physiol 271:E1067–E1072PubMed Baron AD, Brechtel-Hook G, Johnson A, Cronin J, Leaming R, Steinberg HO (1996) Effect of perfusion rate on the time course of insulin-mediated skeletal muscle glucose uptake. Am J Physiol 271:E1067–E1072PubMed
43.
Zurück zum Zitat Vincent MA, Clerk LH, Rattigan S, Clark MG, Barrett EJ (2005) Active role for the vasculature in the delivery of insulin to skeletal muscle. Clin Exp Pharmacol Physiol 32:302–307PubMedCrossRef Vincent MA, Clerk LH, Rattigan S, Clark MG, Barrett EJ (2005) Active role for the vasculature in the delivery of insulin to skeletal muscle. Clin Exp Pharmacol Physiol 32:302–307PubMedCrossRef
44.
Zurück zum Zitat Cleland SJ, Petrie JR, Ueda S, Elliott HL, Connell JMC (1999) Insulin-mediated vasodilation and glucose uptake are functionally linked in humans. Hypertension 33:554–558PubMed Cleland SJ, Petrie JR, Ueda S, Elliott HL, Connell JMC (1999) Insulin-mediated vasodilation and glucose uptake are functionally linked in humans. Hypertension 33:554–558PubMed
45.
Zurück zum Zitat Natali A, Buzzigoli G, Taddei S et al (1990) Effects of insulin on hemodynamics and metabolism in human forearm. Diabetes 39:490–500PubMedCrossRef Natali A, Buzzigoli G, Taddei S et al (1990) Effects of insulin on hemodynamics and metabolism in human forearm. Diabetes 39:490–500PubMedCrossRef
46.
Zurück zum Zitat Natali A, Quinones Galvan A, Pecori N, Sanna G, Toschi E, Ferrannini E (1998) Vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension 31:632–636PubMed Natali A, Quinones Galvan A, Pecori N, Sanna G, Toschi E, Ferrannini E (1998) Vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension 31:632–636PubMed
47.
Zurück zum Zitat Nuutila P, Raitakari M, Laine H et al (1996) Role of blood flow in regulating insulin-stimulated glucose uptake in humans: Studies using bradykinin, [15O]water, and [18F]fluoro-deoxy-glucose and positron emission tomography. J Clin Invest 97:1741–1747PubMedCrossRef Nuutila P, Raitakari M, Laine H et al (1996) Role of blood flow in regulating insulin-stimulated glucose uptake in humans: Studies using bradykinin, [15O]water, and [18F]fluoro-deoxy-glucose and positron emission tomography. J Clin Invest 97:1741–1747PubMedCrossRef
48.
Zurück zum Zitat Laine M, Ykijarvinen H, Kirvela O et al (1998) Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J Clin Invest 101:1156–1162PubMedCrossRef Laine M, Ykijarvinen H, Kirvela O et al (1998) Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J Clin Invest 101:1156–1162PubMedCrossRef
49.
Zurück zum Zitat Baron AD, Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G (1995) Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 96:786–792PubMedCrossRef Baron AD, Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G (1995) Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 96:786–792PubMedCrossRef
50.
Zurück zum Zitat Natali A, Galvan AQ, Pecori N, Sanna G, Toschi E, Ferrannini E (1998) vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension 31:632–636PubMed Natali A, Galvan AQ, Pecori N, Sanna G, Toschi E, Ferrannini E (1998) vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. Hypertension 31:632–636PubMed
51.
Zurück zum Zitat Rattigan S, Clark MG, Barrett EJ (1997) Hemodynamic actions of insulin in rat skeletal muscle: Evidence for capillary recruitment. Diabetes 46:1381–1388PubMedCrossRef Rattigan S, Clark MG, Barrett EJ (1997) Hemodynamic actions of insulin in rat skeletal muscle: Evidence for capillary recruitment. Diabetes 46:1381–1388PubMedCrossRef
52.
Zurück zum Zitat Coggins MP, Lindner J, Rattigan S et al (2001) Physiologic hyperinsulinaemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes 50:2682–2690PubMedCrossRef Coggins MP, Lindner J, Rattigan S et al (2001) Physiologic hyperinsulinaemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes 50:2682–2690PubMedCrossRef
53.
Zurück zum Zitat Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S (2003) Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab 285:E123–E129PubMed Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S (2003) Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab 285:E123–E129PubMed
54.
Zurück zum Zitat Vincent MA, Clerk LH, Lindner JR et al (2004) Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 53:1418–1423PubMedCrossRef Vincent MA, Clerk LH, Lindner JR et al (2004) Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes 53:1418–1423PubMedCrossRef
55.
Zurück zum Zitat Zhang L, Vincent MA, Richards SM et al (2004) Insulin sensitivity of muscle capillary recruitment in vivo. Diabetes 53:447–453PubMedCrossRef Zhang L, Vincent MA, Richards SM et al (2004) Insulin sensitivity of muscle capillary recruitment in vivo. Diabetes 53:447–453PubMedCrossRef
56.
Zurück zum Zitat Vincent MA, Clerk LH, Lindner JR et al (2006) Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab 290:E1191–E1197PubMedCrossRef Vincent MA, Clerk LH, Lindner JR et al (2006) Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab 290:E1191–E1197PubMedCrossRef
57.
Zurück zum Zitat Wheatley CM, Rattigan S, Richards SM, Barrett EJ, Clark MG (2004) Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab 287:E804–E809PubMedCrossRef Wheatley CM, Rattigan S, Richards SM, Barrett EJ, Clark MG (2004) Skeletal muscle contraction stimulates capillary recruitment and glucose uptake in insulin-resistant obese Zucker rats. Am J Physiol Endocrinol Metab 287:E804–E809PubMedCrossRef
58.
Zurück zum Zitat Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ (2006) Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes 55:1436–1442PubMedCrossRef Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ (2006) Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes 55:1436–1442PubMedCrossRef
59.
Zurück zum Zitat Rattigan S, Clark MG, Barrett EJ (1999) Acute insulin resistance in rat skeletal muscle in vivo induced by vasoconstriction. Diabetes 48:564–569PubMedCrossRef Rattigan S, Clark MG, Barrett EJ (1999) Acute insulin resistance in rat skeletal muscle in vivo induced by vasoconstriction. Diabetes 48:564–569PubMedCrossRef
60.
Zurück zum Zitat Chen YL, Messina EJ (1996) Dilation of isolated skeletal muscle arterioles by insulin is endothelium dependent and nitric oxide mediated. Am J Physiol 270:H2120–H2124PubMed Chen YL, Messina EJ (1996) Dilation of isolated skeletal muscle arterioles by insulin is endothelium dependent and nitric oxide mediated. Am J Physiol 270:H2120–H2124PubMed
61.
Zurück zum Zitat Delashaw JB, Duling BR (1988) A study of the functional elements regulating capillary perfusion in striated muscle. Microvasc Res 36:162–171PubMedCrossRef Delashaw JB, Duling BR (1988) A study of the functional elements regulating capillary perfusion in striated muscle. Microvasc Res 36:162–171PubMedCrossRef
62.
Zurück zum Zitat Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P (2002) Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res 56:464–471PubMedCrossRef Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P (2002) Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res 56:464–471PubMedCrossRef
63.
Zurück zum Zitat Serne EH, IJzerman RG, Gans ROB et al (2002) Direct evidence for insulin-induced capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia. Diabetes 51:1515–1522PubMedCrossRef Serne EH, IJzerman RG, Gans ROB et al (2002) Direct evidence for insulin-induced capillary recruitment in skin of healthy subjects during physiological hyperinsulinemia. Diabetes 51:1515–1522PubMedCrossRef
64.
Zurück zum Zitat Serne EH, Stehouwer CD, ter Maaten JC et al (1999) Microvascular function relates to insulin sensitivity and blood pressure in normal subjects. Circulation 99:896–902PubMed Serne EH, Stehouwer CD, ter Maaten JC et al (1999) Microvascular function relates to insulin sensitivity and blood pressure in normal subjects. Circulation 99:896–902PubMed
65.
Zurück zum Zitat de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CD (2004) Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation 109:2529–2535PubMedCrossRef de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CD (2004) Impaired microvascular function in obesity: implications for obesity-associated microangiopathy, hypertension, and insulin resistance. Circulation 109:2529–2535PubMedCrossRef
66.
Zurück zum Zitat de Jongh RT, Serne EH, IJzerman RG, Jorstad HT, Stehouwer CD (2008) Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women. Microvasc Res 75:256–262PubMedCrossRef de Jongh RT, Serne EH, IJzerman RG, Jorstad HT, Stehouwer CD (2008) Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women. Microvasc Res 75:256–262PubMedCrossRef
67.
Zurück zum Zitat de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CD (2004) Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 53:2873–2882PubMedCrossRef de Jongh RT, Serne EH, IJzerman RG, de Vries G, Stehouwer CD (2004) Free fatty acid levels modulate microvascular function: relevance for obesity-associated insulin resistance, hypertension, and microangiopathy. Diabetes 53:2873–2882PubMedCrossRef
68.
Zurück zum Zitat Serne EH, de Jongh RT, Eringa EC, IJzerman RG, Stehouwer CD (2007) Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension 50:204–211PubMedCrossRef Serne EH, de Jongh RT, Eringa EC, IJzerman RG, Stehouwer CD (2007) Microvascular dysfunction: a potential pathophysiological role in the metabolic syndrome. Hypertension 50:204–211PubMedCrossRef
69.
Zurück zum Zitat Guma A, Zierath JR, Wallberg-Henriksson H, Klip A (1995) Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. Am J Physiol 268:E613–E622PubMed Guma A, Zierath JR, Wallberg-Henriksson H, Klip A (1995) Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. Am J Physiol 268:E613–E622PubMed
70.
Zurück zum Zitat Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–2386PubMedCrossRef Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–2386PubMedCrossRef
71.
Zurück zum Zitat Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96PubMedCrossRef Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96PubMedCrossRef
72.
Zurück zum Zitat Youd JM, Rattigan S, Clark MG (2000) Acute impairment of insulin-mediated capillary recruitment and glucose uptake in rat skeletal muscle in vivo by TNF-α. Diabetes 49:1904–1909PubMedCrossRef Youd JM, Rattigan S, Clark MG (2000) Acute impairment of insulin-mediated capillary recruitment and glucose uptake in rat skeletal muscle in vivo by TNF-α. Diabetes 49:1904–1909PubMedCrossRef
73.
Zurück zum Zitat Clerk LH, Rattigan S, Clark MG (2002) Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes 51:1138–1145PubMedCrossRef Clerk LH, Rattigan S, Clark MG (2002) Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes 51:1138–1145PubMedCrossRef
74.
Zurück zum Zitat Kim F, Gallis B, Corson MA (2001) TNF-α inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. Am J Physiol Cell Physiol 280:C1057–C1065PubMed Kim F, Gallis B, Corson MA (2001) TNF-α inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. Am J Physiol Cell Physiol 280:C1057–C1065PubMed
75.
Zurück zum Zitat Kim F, Tysseling KA, Rice J et al (2005) Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKβ. Arterioscler Thromb Vasc Biol 25:989–994PubMedCrossRef Kim F, Tysseling KA, Rice J et al (2005) Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKβ. Arterioscler Thromb Vasc Biol 25:989–994PubMedCrossRef
76.
Zurück zum Zitat Eringa EC, Stehouwer CD, Walburg K et al (2006) Physiological concentrations of insulin induce endothelin-dependent vasoconstriction of skeletal muscle resistance arteries in the presence of tumor necrosis factor-α. Dependence on c-Jun N-terminal kinase. Arterioscler Thromb Vasc Biol 26:274–280PubMedCrossRef Eringa EC, Stehouwer CD, Walburg K et al (2006) Physiological concentrations of insulin induce endothelin-dependent vasoconstriction of skeletal muscle resistance arteries in the presence of tumor necrosis factor-α. Dependence on c-Jun N-terminal kinase. Arterioscler Thromb Vasc Biol 26:274–280PubMedCrossRef
77.
Zurück zum Zitat Bakker W, Sipkema P, Stehouwer CD et al (2008) Protein kinase C θ activation induces insulin-mediated constriction of muscle resistance arteries. Diabetes 57:706–713PubMedCrossRef Bakker W, Sipkema P, Stehouwer CD et al (2008) Protein kinase C θ activation induces insulin-mediated constriction of muscle resistance arteries. Diabetes 57:706–713PubMedCrossRef
78.
Zurück zum Zitat Zeng G, Nystrom FH, Ravichandran LV et al (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101:1539–1545PubMed Zeng G, Nystrom FH, Ravichandran LV et al (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101:1539–1545PubMed
79.
Zurück zum Zitat Montagnani M, Chen H, Barr VA, Quon MJ (2001) Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser1179. J Biol Chem 276:30392–30398PubMedCrossRef Montagnani M, Chen H, Barr VA, Quon MJ (2001) Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser1179. J Biol Chem 276:30392–30398PubMedCrossRef
80.
Zurück zum Zitat Jiang ZY, He Z, King BL et al (2003) Characterization of multiple signaling pathways of insulin in the regulation of vascular endothelial growth factor expression in vascular cells and angiogenesis. J Biol Chem 278:31964–31971PubMedCrossRef Jiang ZY, He Z, King BL et al (2003) Characterization of multiple signaling pathways of insulin in the regulation of vascular endothelial growth factor expression in vascular cells and angiogenesis. J Biol Chem 278:31964–31971PubMedCrossRef
81.
Zurück zum Zitat King GL, Johnson SM (1985) Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1586PubMedCrossRef King GL, Johnson SM (1985) Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1586PubMedCrossRef
82.
Zurück zum Zitat Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232PubMedCrossRef Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232PubMedCrossRef
83.
Zurück zum Zitat Bar RS, Boes M, Sandra A (1988) Vascular transport of insulin to rat cardiac muscle. Central role of the capillary endothelium. J Clin Invest 81:1225–1233PubMedCrossRef Bar RS, Boes M, Sandra A (1988) Vascular transport of insulin to rat cardiac muscle. Central role of the capillary endothelium. J Clin Invest 81:1225–1233PubMedCrossRef
84.
Zurück zum Zitat Wang H, Liu Z, Li G, Barrett EJ (2006) The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab 291:E323–E332PubMedCrossRef Wang H, Liu Z, Li G, Barrett EJ (2006) The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab 291:E323–E332PubMedCrossRef
85.
Zurück zum Zitat Steil GM, Ader M, Moore DM, Rebrin K, Bergman RN (1996) Transendothelial insulin transport is not saturable in vivo. No evidence for a receptor-mediated process. J Clin Invest 97:1497–1503PubMedCrossRef Steil GM, Ader M, Moore DM, Rebrin K, Bergman RN (1996) Transendothelial insulin transport is not saturable in vivo. No evidence for a receptor-mediated process. J Clin Invest 97:1497–1503PubMedCrossRef
86.
Zurück zum Zitat Hamilton-Wessler M, Ader M, Dea MK et al (2002) Mode of transcapillary transport of insulin and insulin analog NN304 in dog hindlimb: evidence for passive diffusion. Diabetes 51:574–582PubMedCrossRef Hamilton-Wessler M, Ader M, Dea MK et al (2002) Mode of transcapillary transport of insulin and insulin analog NN304 in dog hindlimb: evidence for passive diffusion. Diabetes 51:574–582PubMedCrossRef
87.
Zurück zum Zitat Chisalita SI, Arnqvist HJ (2004) Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab 286:E896–E901PubMedCrossRef Chisalita SI, Arnqvist HJ (2004) Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab 286:E896–E901PubMedCrossRef
88.
Zurück zum Zitat Wang H, Wang AX, Barrett EJ (2008) siRNA-mediated silencing of caveolin-1 inhibits insulin transport but enhances insulin-stimulated nitric oxide production. Diabetes 57:A383 (Abstract) Wang H, Wang AX, Barrett EJ (2008) siRNA-mediated silencing of caveolin-1 inhibits insulin transport but enhances insulin-stimulated nitric oxide production. Diabetes 57:A383 (Abstract)
89.
Zurück zum Zitat Bendayan M, Rasio EA (1996) Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J Cell Sci 109:1857–1864PubMed Bendayan M, Rasio EA (1996) Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J Cell Sci 109:1857–1864PubMed
90.
Zurück zum Zitat Kaiser N, Vlodavsky I, Tur-Sinai A, Fuks Z, Cerasi E (1982) Binding, internalization, and degradation of insulin in vascular endothelial cells. Diabetes 31:1077–1083PubMedCrossRef Kaiser N, Vlodavsky I, Tur-Sinai A, Fuks Z, Cerasi E (1982) Binding, internalization, and degradation of insulin in vascular endothelial cells. Diabetes 31:1077–1083PubMedCrossRef
91.
Zurück zum Zitat Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975PubMedCrossRef Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB (1997) Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem 272:25968–25975PubMedCrossRef
92.
Zurück zum Zitat Predescu SA, Predescu DN, Malik AB (2007) Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293:L823–L842PubMedCrossRef Predescu SA, Predescu DN, Malik AB (2007) Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 293:L823–L842PubMedCrossRef
93.
Zurück zum Zitat Zeng G, Quon MJ (1996) Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98:894–898PubMedCrossRef Zeng G, Quon MJ (1996) Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98:894–898PubMedCrossRef
94.
Zurück zum Zitat Jiang ZY, Lin YW, Clemont A et al (1999) Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 104:447–457PubMedCrossRef Jiang ZY, Lin YW, Clemont A et al (1999) Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 104:447–457PubMedCrossRef
95.
Zurück zum Zitat Li G, Barrett EJ, Wang H, Chai W, Liu Z (2005) Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146:4690–4696PubMedCrossRef Li G, Barrett EJ, Wang H, Chai W, Liu Z (2005) Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology 146:4690–4696PubMedCrossRef
96.
Zurück zum Zitat Wang H, Wang AX, Liu Z, Barrett EJ (2008) Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes 57:540–547PubMedCrossRef Wang H, Wang AX, Liu Z, Barrett EJ (2008) Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes 57:540–547PubMedCrossRef
97.
Zurück zum Zitat Vicent D, Ilany J, Kondo T et al (2003) The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 111:1373–1380PubMed Vicent D, Ilany J, Kondo T et al (2003) The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest 111:1373–1380PubMed
98.
Zurück zum Zitat Kubota T, Hubota N, Kozono H et al (2008) Insulin signaling in endothelial cells participates in the regulation of skeletal muscle insulin sensitivity. Diabetes 57:A369 (Abstract) Kubota T, Hubota N, Kozono H et al (2008) Insulin signaling in endothelial cells participates in the regulation of skeletal muscle insulin sensitivity. Diabetes 57:A369 (Abstract)
99.
Zurück zum Zitat Westerbacka J, Seppala-Lindroos A, Yki-Jarvinen H (2001) Resistance to acute insulin induced decreases in large artery stiffness accompanies the insulin resistance syndrome. J Clin Endocrinol Metab 86:5262–5268PubMedCrossRef Westerbacka J, Seppala-Lindroos A, Yki-Jarvinen H (2001) Resistance to acute insulin induced decreases in large artery stiffness accompanies the insulin resistance syndrome. J Clin Endocrinol Metab 86:5262–5268PubMedCrossRef
Metadaten
Titel
The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action
verfasst von
E. J. Barrett
E. M. Eggleston
A. C. Inyard
H. Wang
G. Li
W. Chai
Z. Liu
Publikationsdatum
01.05.2009
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 5/2009
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-009-1313-z

Weitere Artikel der Ausgabe 5/2009

Diabetologia 5/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.