Skip to main content
Erschienen in: Diabetologia 9/2009

01.09.2009 | Article

Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2)

verfasst von: S. Rome, E. Meugnier, V. Lecomte, V. Berbe, J. Besson, C. Cerutti, S. Pesenti, A. Granjon, E. Disse, K. Clement, E. Lefai, M. Laville, H. Vidal

Erschienen in: Diabetologia | Ausgabe 9/2009

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

One of the major processes by which insulin exerts its multiple biological actions is through gene expression regulation. Thus, the identification of transcription factors affected by insulin in target tissues represents an important challenge. The aim of the present study was to gain a greater insight into this issue through the identification of transcription factor genes with insulin-regulated expression in human skeletal muscle.

Methods

Using microarray analysis, we defined the sets of genes modulated during a 3 h hyperinsulinaemic–euglycaemic clamp (2 mU min−1 kg−1) in the skeletal muscle of insulin-sensitive control volunteers and in moderately obese insulin-resistant type 2 diabetic patients.

Results

Of the 1,529 and 1,499 genes regulated during the clamp in control and diabetic volunteers, respectively, we identified 30 transcription factors with impaired insulin-regulation in type 2 diabetic patients. Analysis of the promoters of the genes encoding these factors revealed a possible contribution of the transcriptional repressor basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2), insulin regulation of which is strongly altered in the muscle of diabetic patients. Gene ontology analysis of BHLHB2 target genes, identified after BHLHB2 overexpression in human primary myotubes, demonstrated that about 10% of the genes regulated in vivo during hyperinsulinaemia are potentially under the control of this repressor. The data also suggested that BHLHB2 is situated at the crossroads of a complex transcriptional network that is able to modulate major metabolic and biological pathways in skeletal muscle, including the regulation of a cluster of genes involved in muscle development and contraction.

Conclusions/interpretation

We have identified BHLHB2 as a potential novel mediator of insulin transcriptional action in human skeletal muscle.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943PubMedCrossRef Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943PubMedCrossRef
2.
Zurück zum Zitat Coletta DK, Balas B, Chavez AO et al (2008) Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo. Am J Physiol 294:E910–E917 Coletta DK, Balas B, Chavez AO et al (2008) Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo. Am J Physiol 294:E910–E917
3.
Zurück zum Zitat Rome S, Clement K, Rabasa-Lhoret R et al (2003) Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem 278:18063–18068PubMedCrossRef Rome S, Clement K, Rabasa-Lhoret R et al (2003) Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem 278:18063–18068PubMedCrossRef
4.
Zurück zum Zitat Wu X, Wang J, Cui X et al (2007) The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle. Endocrine 31:5–17PubMedCrossRef Wu X, Wang J, Cui X et al (2007) The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle. Endocrine 31:5–17PubMedCrossRef
5.
Zurück zum Zitat Jee S, Hwang D, Seo S et al (2007) Microarray analysis of insulin-regulated gene expression in the liver: the use of transgenic mice co-expressing insulin-siRNA and human IDE as an animal model. Int J Mol Med 20:829–835PubMed Jee S, Hwang D, Seo S et al (2007) Microarray analysis of insulin-regulated gene expression in the liver: the use of transgenic mice co-expressing insulin-siRNA and human IDE as an animal model. Int J Mol Med 20:829–835PubMed
6.
Zurück zum Zitat O’Brien RM, Granner DK (1996) Regulation of gene expression by insulin. Physiol Rev 76:1109–1161PubMed O’Brien RM, Granner DK (1996) Regulation of gene expression by insulin. Physiol Rev 76:1109–1161PubMed
7.
Zurück zum Zitat Osborne TF (2000) Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem 275:32379–32382PubMedCrossRef Osborne TF (2000) Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem 275:32379–32382PubMedCrossRef
8.
Zurück zum Zitat Chahal J, Chen CC, Rane MJ et al (2008) Regulation of insulin-response element binding protein-1 in obesity and diabetes: potential role in impaired insulin-induced gene transcription. Endocrinology 149:4829–4836PubMedCrossRef Chahal J, Chen CC, Rane MJ et al (2008) Regulation of insulin-response element binding protein-1 in obesity and diabetes: potential role in impaired insulin-induced gene transcription. Endocrinology 149:4829–4836PubMedCrossRef
9.
Zurück zum Zitat Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183–189PubMedCrossRef Barthel A, Schmoll D, Unterman TG (2005) FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16:183–189PubMedCrossRef
10.
Zurück zum Zitat Andersen PH, Lund S, Vestergaard H, Junker S, Kahn BB, Pedersen O (1993) Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin-dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab 77:27–32PubMedCrossRef Andersen PH, Lund S, Vestergaard H, Junker S, Kahn BB, Pedersen O (1993) Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin-dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab 77:27–32PubMedCrossRef
11.
Zurück zum Zitat Ducluzeau PH, Perretti N, Laville M et al (2001) Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes 50:1134–1142PubMedCrossRef Ducluzeau PH, Perretti N, Laville M et al (2001) Regulation by insulin of gene expression in human skeletal muscle and adipose tissue. Evidence for specific defects in type 2 diabetes. Diabetes 50:1134–1142PubMedCrossRef
12.
Zurück zum Zitat Vestergaard H, Bjorbaek C, Hansen T, Larsen FS, Granner DK, Pedersen O (1995) Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J Clin Invest 96:2639–2645PubMedCrossRef Vestergaard H, Bjorbaek C, Hansen T, Larsen FS, Granner DK, Pedersen O (1995) Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J Clin Invest 96:2639–2645PubMedCrossRef
13.
Zurück zum Zitat Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471PubMedCrossRef Patti ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471PubMedCrossRef
14.
Zurück zum Zitat Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRef Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRef
15.
Zurück zum Zitat Yamada K, Miyamoto K (2005) Basic helix-loop-helix transcription factors, BHLHB2 and BHLHB3; their gene expressions are regulated by multiple extracellular stimuli. Front Biosci 10:3151–3171PubMedCrossRef Yamada K, Miyamoto K (2005) Basic helix-loop-helix transcription factors, BHLHB2 and BHLHB3; their gene expressions are regulated by multiple extracellular stimuli. Front Biosci 10:3151–3171PubMedCrossRef
16.
Zurück zum Zitat Laville M, Auboeuf D, Khalfallah Y, Vega N, Riou JP, Vidal H (1996) Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle. J Clin Invest 98:43–49PubMedCrossRef Laville M, Auboeuf D, Khalfallah Y, Vega N, Riou JP, Vidal H (1996) Acute regulation by insulin of phosphatidylinositol-3-kinase, Rad, Glut 4, and lipoprotein lipase mRNA levels in human muscle. J Clin Invest 98:43–49PubMedCrossRef
17.
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol) 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol) 57:289–300
18.
Zurück zum Zitat Cartharius K, Frech K, Grote K et al (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics (Oxford, England) 21:2933–2942CrossRef Cartharius K, Frech K, Grote K et al (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics (Oxford, England) 21:2933–2942CrossRef
19.
Zurück zum Zitat Rome S, Lecomte V, Meugnier E et al (2008) Microarrays analysis of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics 34:327–337PubMedCrossRef Rome S, Lecomte V, Meugnier E et al (2008) Microarrays analysis of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle. Physiol Genomics 34:327–337PubMedCrossRef
20.
Zurück zum Zitat Le Brigand K, Russell R, Moreilhon C et al (2006) An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes. Nucleic Acids Res 34:e87PubMedCrossRef Le Brigand K, Russell R, Moreilhon C et al (2006) An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes. Nucleic Acids Res 34:e87PubMedCrossRef
21.
Zurück zum Zitat Nomura N, Zhao MJ, Nagase T et al (1991) HIV-EP2, a new member of the gene family encoding the human immunodeficiency virus type 1 enhancer-binding protein. Comparison with HIV-EP1/PRDII-BF1/MBP-1. J Biol Chem 266:8590–8594PubMed Nomura N, Zhao MJ, Nagase T et al (1991) HIV-EP2, a new member of the gene family encoding the human immunodeficiency virus type 1 enhancer-binding protein. Comparison with HIV-EP1/PRDII-BF1/MBP-1. J Biol Chem 266:8590–8594PubMed
22.
Zurück zum Zitat Schmitz G, Langmann T (2005) Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim Biophys Acta 1735:1–19PubMed Schmitz G, Langmann T (2005) Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochim Biophys Acta 1735:1–19PubMed
23.
Zurück zum Zitat Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 17:5085–5094PubMedCrossRef Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 17:5085–5094PubMedCrossRef
24.
Zurück zum Zitat Swanson HI, Chan WK, Bradfield CA (1995) DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem 270:26292–26302PubMedCrossRef Swanson HI, Chan WK, Bradfield CA (1995) DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. J Biol Chem 270:26292–26302PubMedCrossRef
25.
Zurück zum Zitat St-Pierre B, Flock G, Zacksenhaus E, Egan SE (2002) Stra13 homodimers repress transcription through class B E-box elements. J Biol Chem 277:46544–46551PubMedCrossRef St-Pierre B, Flock G, Zacksenhaus E, Egan SE (2002) Stra13 homodimers repress transcription through class B E-box elements. J Biol Chem 277:46544–46551PubMedCrossRef
26.
Zurück zum Zitat Klaus F, Palmada M, Lindner R et al (2008) Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1. J Physiol 586:1539–1547PubMedCrossRef Klaus F, Palmada M, Lindner R et al (2008) Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1. J Physiol 586:1539–1547PubMedCrossRef
27.
Zurück zum Zitat Pendergrass M, Koval J, Vogt C et al (1998) Insulin-induced hexokinase II expression is reduced in obesity and NIDDM. Diabetes 47:387–394PubMedCrossRef Pendergrass M, Koval J, Vogt C et al (1998) Insulin-induced hexokinase II expression is reduced in obesity and NIDDM. Diabetes 47:387–394PubMedCrossRef
28.
Zurück zum Zitat Andreelli F, Laville M, Ducluzeau PH et al (1999) Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia 42:358–364PubMedCrossRef Andreelli F, Laville M, Ducluzeau PH et al (1999) Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia 42:358–364PubMedCrossRef
29.
Zurück zum Zitat Frojdo S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92PubMed Frojdo S, Vidal H, Pirola L (2009) Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 1792:83–92PubMed
30.
Zurück zum Zitat Bouzakri K, Roques M, Gual P et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325PubMedCrossRef Bouzakri K, Roques M, Gual P et al (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325PubMedCrossRef
31.
Zurück zum Zitat Draznin B (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55:2392–2397PubMedCrossRef Draznin B (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55:2392–2397PubMedCrossRef
32.
Zurück zum Zitat Dahlman I, Vaxillaire M, Nilsson M et al (2008) Estrogen receptor alpha gene variants associate with type 2 diabetes and fasting plasma glucose. Pharmacogenet Genomics 18:967–975PubMedCrossRef Dahlman I, Vaxillaire M, Nilsson M et al (2008) Estrogen receptor alpha gene variants associate with type 2 diabetes and fasting plasma glucose. Pharmacogenet Genomics 18:967–975PubMedCrossRef
33.
Zurück zum Zitat Romzova M, Hohenadel D, Kolostova K et al (2006) NFkappaB and its inhibitor IkappaB in relation to type 2 diabetes and its microvascular and atherosclerotic complications. Hum Immunol 67:706–713PubMedCrossRef Romzova M, Hohenadel D, Kolostova K et al (2006) NFkappaB and its inhibitor IkappaB in relation to type 2 diabetes and its microvascular and atherosclerotic complications. Hum Immunol 67:706–713PubMedCrossRef
34.
Zurück zum Zitat Foti D, Chiefari E, Fedele M et al (2005) Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat Med 11:765–773PubMedCrossRef Foti D, Chiefari E, Fedele M et al (2005) Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat Med 11:765–773PubMedCrossRef
35.
Zurück zum Zitat Iizuka K, Horikawa Y (2008) Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem Biophys Res Commun 374:95–100PubMedCrossRef Iizuka K, Horikawa Y (2008) Regulation of lipogenesis via BHLHB2/DEC1 and ChREBP feedback looping. Biochem Biophys Res Commun 374:95–100PubMedCrossRef
36.
Zurück zum Zitat Yamada K, Kawata H, Shou Z, Mizutani T, Noguchi T, Miyamoto K (2003) Insulin induces the expression of the SHARP-2/Stra13/DEC1 gene via a phosphoinositide 3-kinase pathway. J Biol Chem 278:30719–30724PubMedCrossRef Yamada K, Kawata H, Shou Z, Mizutani T, Noguchi T, Miyamoto K (2003) Insulin induces the expression of the SHARP-2/Stra13/DEC1 gene via a phosphoinositide 3-kinase pathway. J Biol Chem 278:30719–30724PubMedCrossRef
37.
Zurück zum Zitat Krook A, Roth RA, Jiang XJ, Zierath JR, Wallberg-Henriksson H (1998) Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes 47:1281–1286PubMedCrossRef Krook A, Roth RA, Jiang XJ, Zierath JR, Wallberg-Henriksson H (1998) Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes 47:1281–1286PubMedCrossRef
38.
Zurück zum Zitat Choi SM, Cho HJ, Cho H, Kim KH, Kim JB, Park H (2008) Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Res 36:6372–6385PubMedCrossRef Choi SM, Cho HJ, Cho H, Kim KH, Kim JB, Park H (2008) Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Res 36:6372–6385PubMedCrossRef
39.
Zurück zum Zitat Naya FJ, Olson E (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688PubMedCrossRef Naya FJ, Olson E (1999) MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol 11:683–688PubMedCrossRef
40.
Zurück zum Zitat Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMedCrossRef Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMedCrossRef
41.
Zurück zum Zitat Sun Z, Liu L, Liu N, Liu Y (2008) Muscular response and adaptation to diabetes mellitus. Front Biosci 13:4765–4794PubMedCrossRef Sun Z, Liu L, Liu N, Liu Y (2008) Muscular response and adaptation to diabetes mellitus. Front Biosci 13:4765–4794PubMedCrossRef
Metadaten
Titel
Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2)
verfasst von
S. Rome
E. Meugnier
V. Lecomte
V. Berbe
J. Besson
C. Cerutti
S. Pesenti
A. Granjon
E. Disse
K. Clement
E. Lefai
M. Laville
H. Vidal
Publikationsdatum
01.09.2009
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 9/2009
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-009-1442-4

Weitere Artikel der Ausgabe 9/2009

Diabetologia 9/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.