Skip to main content
Erschienen in: Diabetologia 8/2010

01.08.2010 | Article

Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion

verfasst von: N. Wijesekara, F. F. Dai, A. B. Hardy, P. R. Giglou, A. Bhattacharjee, V. Koshkin, F. Chimienti, H. Y. Gaisano, G. A. Rutter, M. B. Wheeler

Erschienen in: Diabetologia | Ausgabe 8/2010

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Zinc is highly concentrated in pancreatic beta cells, is critical for normal insulin storage and may regulate glucagon secretion from alpha cells. Zinc transport family member 8 (ZnT8) is a zinc efflux transporter that is highly abundant in beta cells. Polymorphisms of ZnT8 (also known as SLC30A8) gene in man are associated with increased risk of type 2 diabetes. While global Znt8 knockout (Znt8KO) mice have been characterised, ZnT8 is also present in other islet cell types and extra-pancreatic tissues. Therefore, it is important to find ways of understanding the role of ZnT8 in beta and alpha cells without the difficulties caused by the confounding effects of ZnT8 in these other tissues.

Methods

We generated mice with beta cell-specific (Znt8BKO) and alpha cell-specific (Znt8AKO) knockout of Znt8, and performed in vivo and in vitro characterisation of the phenotypes to determine the functional and anatomical impact of ZnT8 in these cells. Thus we assessed zinc accumulation, insulin granule morphology, insulin biosynthesis and secretion, and glucose homeostasis.

Results

Znt8BKO mice are glucose-intolerant, have reduced beta cell zinc accumulation and atypical insulin granules. They also display reduced first-phase glucose-stimulated insulin secretion, reduced insulin processing enzyme transcripts and increased proinsulin levels. In contrast, Znt8AKO mice show no evident abnormalities in plasma glucagon and glucose homeostasis.

Conclusions/interpretation

This is the first report of specific beta and alpha cell deletion of Znt8. Our data indicate that while, under the conditions studied, ZnT8 is absolutely essential for proper beta cell function, it is largely dispensable for alpha cell function.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRefPubMed Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885CrossRefPubMed
2.
Zurück zum Zitat Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336CrossRefPubMed Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336CrossRefPubMed
3.
Zurück zum Zitat Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345CrossRefPubMed Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345CrossRefPubMed
4.
Zurück zum Zitat Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341CrossRefPubMed Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341CrossRefPubMed
5.
Zurück zum Zitat Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775CrossRefPubMed Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775CrossRefPubMed
6.
Zurück zum Zitat Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 104:17040–17045CrossRefPubMed Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 104:17040–17045CrossRefPubMed
7.
Zurück zum Zitat Staiger H, Machicao F, Stefan N et al (2007) Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. PLoS One 2:e832CrossRefPubMed Staiger H, Machicao F, Stefan N et al (2007) Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. PLoS One 2:e832CrossRefPubMed
8.
Zurück zum Zitat Cauchi S, Proenca C, Choquet H et al (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. Study. J Mol Med 86:341–348CrossRefPubMed Cauchi S, Proenca C, Choquet H et al (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. Study. J Mol Med 86:341–348CrossRefPubMed
9.
Zurück zum Zitat Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc–insulin interactions in the pancreatic B-cell. Diabetologia 19:174–182CrossRefPubMed Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc–insulin interactions in the pancreatic B-cell. Diabetologia 19:174–182CrossRefPubMed
10.
Zurück zum Zitat Chimienti F, Devergnas S, Pattou F et al (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206CrossRefPubMed Chimienti F, Devergnas S, Pattou F et al (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206CrossRefPubMed
11.
Zurück zum Zitat Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337CrossRefPubMed Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337CrossRefPubMed
12.
Zurück zum Zitat Lemaire K, Ravier MA, Schraenen A et al (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877CrossRefPubMed Lemaire K, Ravier MA, Schraenen A et al (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877CrossRefPubMed
13.
Zurück zum Zitat Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083CrossRefPubMed Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083CrossRefPubMed
14.
Zurück zum Zitat Pound LD, Sarkar SA, Benninger RK et al (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376CrossRefPubMed Pound LD, Sarkar SA, Benninger RK et al (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376CrossRefPubMed
15.
Zurück zum Zitat Seve M, Chimienti F, Devergnas S, Favier A (2004) In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters' tissue expression. BMC Genomics 5:32CrossRefPubMed Seve M, Chimienti F, Devergnas S, Favier A (2004) In silico identification and expression of SLC30 family genes: an expressed sequence tag data mining strategy for the characterization of zinc transporters' tissue expression. BMC Genomics 5:32CrossRefPubMed
16.
Zurück zum Zitat Smidt K, Pedersen SB, Brock B et al (2007) Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocrinol 264:68–73CrossRefPubMed Smidt K, Pedersen SB, Brock B et al (2007) Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocrinol 264:68–73CrossRefPubMed
17.
Zurück zum Zitat Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L (2008) Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 83:368–380CrossRefPubMed Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L (2008) Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 83:368–380CrossRefPubMed
18.
Zurück zum Zitat Murgia C, Devirgiliis C, Mancini E, Donadel G, Zalewski P, Perozzi G (2009) Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr Metab Cardiovasc Dis 19:431–439CrossRefPubMed Murgia C, Devirgiliis C, Mancini E, Donadel G, Zalewski P, Perozzi G (2009) Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr Metab Cardiovasc Dis 19:431–439CrossRefPubMed
19.
Zurück zum Zitat Gyulkhandanyan AV, Lu H, Lee SC et al (2008) Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J Biol Chem 283:10184–10197CrossRefPubMed Gyulkhandanyan AV, Lu H, Lee SC et al (2008) Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J Biol Chem 283:10184–10197CrossRefPubMed
20.
Zurück zum Zitat Egefjord L, Petersen AB, Rungby J (2010) Zinc, alpha cells and glucagon secretion. Current Diabetes Reviews 6:52–57CrossRefPubMed Egefjord L, Petersen AB, Rungby J (2010) Zinc, alpha cells and glucagon secretion. Current Diabetes Reviews 6:52–57CrossRefPubMed
21.
Zurück zum Zitat Souza SC, Qiu L, Inouye KE, Roix JJ, Chen H (2009) Zinc transporter ZnT-8 regulates insulin and glucagon seretion in Min6 and aTC1-9 pancreatic cell lines. Diabetologia 51(Suppl 1):501 Souza SC, Qiu L, Inouye KE, Roix JJ, Chen H (2009) Zinc transporter ZnT-8 regulates insulin and glucagon seretion in Min6 and aTC1-9 pancreatic cell lines. Diabetologia 51(Suppl 1):501
22.
Zurück zum Zitat Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP (2007) Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56:1107–1112CrossRefPubMed Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP (2007) Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56:1107–1112CrossRefPubMed
23.
Zurück zum Zitat Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB (2005) Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808–1815CrossRefPubMed Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB (2005) Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808–1815CrossRefPubMed
24.
Zurück zum Zitat Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB (2003) Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol 5:330–335CrossRefPubMed Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB (2003) Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol 5:330–335CrossRefPubMed
25.
Zurück zum Zitat Ravier MA, Rutter GA (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54:1789–1797CrossRefPubMed Ravier MA, Rutter GA (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54:1789–1797CrossRefPubMed
26.
Zurück zum Zitat Nguyen KT, Tajmir P, Lin CH et al (2006) Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo. Mol Cell Biol 26:4511–4518CrossRefPubMed Nguyen KT, Tajmir P, Lin CH et al (2006) Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo. Mol Cell Biol 26:4511–4518CrossRefPubMed
27.
Zurück zum Zitat Quoix N, Cheng-Xue R, Guiot Y, Herrera PL, Henquin JC, Gilon P (2007) The GluCre-ROSA26EYFP mouse: a new model for easy identification of living pancreatic alpha-cells. FEBS Lett 581:4235–4240CrossRefPubMed Quoix N, Cheng-Xue R, Guiot Y, Herrera PL, Henquin JC, Gilon P (2007) The GluCre-ROSA26EYFP mouse: a new model for easy identification of living pancreatic alpha-cells. FEBS Lett 581:4235–4240CrossRefPubMed
28.
Zurück zum Zitat Lee SC, Robson-Doucette CA, Wheeler MB (2009) Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. J Endocrinol 203:33–43CrossRefPubMed Lee SC, Robson-Doucette CA, Wheeler MB (2009) Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. J Endocrinol 203:33–43CrossRefPubMed
29.
Zurück zum Zitat O'Gorman D, Kin T, Murdoch T et al (2005) The standardization of pancreatic donors for islet isolations. Transplantation 80:801–806CrossRefPubMed O'Gorman D, Kin T, Murdoch T et al (2005) The standardization of pancreatic donors for islet isolations. Transplantation 80:801–806CrossRefPubMed
30.
Zurück zum Zitat Hardy AB, Fox JE, Giglou PR et al (2009) Characterization of Erg K+ channels in alpha- and beta-cells of mouse and human islets. J Biol Chem 284:30441–30452CrossRefPubMed Hardy AB, Fox JE, Giglou PR et al (2009) Characterization of Erg K+ channels in alpha- and beta-cells of mouse and human islets. J Biol Chem 284:30441–30452CrossRefPubMed
31.
Zurück zum Zitat Tam P, Mahfoud R, Nutikka A et al (2008) Differential intracellular transport and binding of verotoxin 1 and verotoxin 2 to globotriaosylceramide-containing lipid assemblies. J Cell Physiol 216:750–763CrossRefPubMed Tam P, Mahfoud R, Nutikka A et al (2008) Differential intracellular transport and binding of verotoxin 1 and verotoxin 2 to globotriaosylceramide-containing lipid assemblies. J Cell Physiol 216:750–763CrossRefPubMed
32.
Zurück zum Zitat Michael J, Carroll R, Swift HH, Steiner DF (1987) Studies on the molecular organization of rat insulin secretory granules. J Biol Chem 262:16531–16535PubMed Michael J, Carroll R, Swift HH, Steiner DF (1987) Studies on the molecular organization of rat insulin secretory granules. J Biol Chem 262:16531–16535PubMed
33.
Zurück zum Zitat Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361–9372CrossRefPubMed Gyulkhandanyan AV, Lee SC, Bikopoulos G, Dai F, Wheeler MB (2006) The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J Biol Chem 281:9361–9372CrossRefPubMed
34.
Zurück zum Zitat Tamaki M, Fujitani Y, Uchida T, Hirose T, Kawamori R, Watada H (2009) Downregulation of ZnT8 expression in pancreatic b-cells of diabetic mice. Islets 1:124–128CrossRef Tamaki M, Fujitani Y, Uchida T, Hirose T, Kawamori R, Watada H (2009) Downregulation of ZnT8 expression in pancreatic b-cells of diabetic mice. Islets 1:124–128CrossRef
35.
Zurück zum Zitat Fu Y, Tian W, Pratt EB et al (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One 4:e5679CrossRefPubMed Fu Y, Tian W, Pratt EB et al (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One 4:e5679CrossRefPubMed
36.
Zurück zum Zitat Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2:1–2CrossRef Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2:1–2CrossRef
37.
38.
39.
Zurück zum Zitat Gromada J, Franklin I, Wollheim CB (2007) Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28:84–116CrossRefPubMed Gromada J, Franklin I, Wollheim CB (2007) Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 28:84–116CrossRefPubMed
40.
Zurück zum Zitat Dodson G, Steiner D (1998) The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol 8:189–194CrossRefPubMed Dodson G, Steiner D (1998) The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol 8:189–194CrossRefPubMed
41.
Zurück zum Zitat Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M, Handa H (2002) MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J Biol Chem 277:49903–49910CrossRefPubMed Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M, Handa H (2002) MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J Biol Chem 277:49903–49910CrossRefPubMed
42.
Zurück zum Zitat Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. Embo J 12:4251–4259PubMed Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing transactivator of the insulin gene. Embo J 12:4251–4259PubMed
43.
Zurück zum Zitat Kambe T, Narita H, Yamaguchi-Iwai Y et al (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277:19049–19055CrossRefPubMed Kambe T, Narita H, Yamaguchi-Iwai Y et al (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277:19049–19055CrossRefPubMed
44.
Zurück zum Zitat Steiner DF, Rouille Y, Gong Q, Martin S, Carroll R, Chan SJ (1996) The role of prohormone convertases in insulin biosynthesis: evidence for inherited defects in their action in man and experimental animals. Diabetes Metab 22:94–104PubMed Steiner DF, Rouille Y, Gong Q, Martin S, Carroll R, Chan SJ (1996) The role of prohormone convertases in insulin biosynthesis: evidence for inherited defects in their action in man and experimental animals. Diabetes Metab 22:94–104PubMed
45.
Zurück zum Zitat Goodge KA, Hutton JC (2000) Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell. Semin Cell Dev Biol 11:235–242CrossRefPubMed Goodge KA, Hutton JC (2000) Translational regulation of proinsulin biosynthesis and proinsulin conversion in the pancreatic beta-cell. Semin Cell Dev Biol 11:235–242CrossRefPubMed
46.
Zurück zum Zitat Furuta M, Carroll R, Martin S et al (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31, 32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273:3431–3437CrossRefPubMed Furuta M, Carroll R, Martin S et al (1998) Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31, 32 proinsulin intermediates in islets of mice lacking active PC2. J Biol Chem 273:3431–3437CrossRefPubMed
47.
Zurück zum Zitat Naggert JK, Fricker LD, Varlamov O et al (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10:135–142CrossRefPubMed Naggert JK, Fricker LD, Varlamov O et al (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10:135–142CrossRefPubMed
48.
Zurück zum Zitat Yang Y, Chang BH, Samson SL, Li MV, Chan L (2009) The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37:2529–2538CrossRefPubMed Yang Y, Chang BH, Samson SL, Li MV, Chan L (2009) The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37:2529–2538CrossRefPubMed
49.
Zurück zum Zitat Eto K, Kaur V, Thomas MK (2006) Regulation of insulin gene transcription by the immediate-early growth response gene Egr-1. Endocrinology 147:2923–2935CrossRefPubMed Eto K, Kaur V, Thomas MK (2006) Regulation of insulin gene transcription by the immediate-early growth response gene Egr-1. Endocrinology 147:2923–2935CrossRefPubMed
50.
Zurück zum Zitat Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601CrossRefPubMed Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601CrossRefPubMed
Metadaten
Titel
Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion
verfasst von
N. Wijesekara
F. F. Dai
A. B. Hardy
P. R. Giglou
A. Bhattacharjee
V. Koshkin
F. Chimienti
H. Y. Gaisano
G. A. Rutter
M. B. Wheeler
Publikationsdatum
01.08.2010
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 8/2010
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-1733-9

Weitere Artikel der Ausgabe 8/2010

Diabetologia 8/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.