Skip to main content
Erschienen in: Diabetologia 4/2012

01.04.2012 | Article

A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3

verfasst von: K. Hess, S. H. Alzahrani, M. Mathai, V. Schroeder, A. M. Carter, G. Howell, T. Koko, M. W. J. Strachan, J. F. Price, K. A. Smith, P. J. Grant, R. A. Ajjan

Erschienen in: Diabetologia | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Impaired fibrin clot lysis is a key abnormality in diabetes and complement C3 is one protein identified in blood clots. This work investigates the mechanistic pathways linking C3 and hypofibrinolysis in diabetes using ex vivo/in vitro studies.

Methods

Fibrinolysis and C3 plasma levels were determined in type 1 diabetic patients and healthy controls, and the effects of glycaemia investigated. C3 incorporation into fibrin clots and modulation of fibrinolysis were analysed by ELISA, immunoblotting, turbidimetric assays and electron and confocal microscopy.

Results

Clot lysis time was longer in diabetic children than in controls (599 ± 18 and 516 ± 12 s respectively; p < 0.01), C3 levels were higher in diabetic children (0.55 ± 0.02 and 0.43 ± 0.02 g/l respectively; p < 0.01) and both were affected by improving glycaemia. An interaction between C3 and fibrin was confirmed by the presence of lower protein levels in sera compared with corresponding plasma and C3 detection in plasma clots by immunoblot. In a purified system, C3 was associated with thinner fibrin fibres and more prolongation of lysis time of clots made from fibrinogen from diabetic participants compared with controls (244 ± 64 and 92 ± 23 s respectively; p < 0.05). Confocal microscopy showed higher C3 incorporation into diabetic clots compared with controls, and fully formed clot lysis was prolonged by 764 ± 76 and 428 ± 105 s respectively (p < 0.05). Differences in lysis, comparing diabetes and controls, were not related to altered plasmin generation or C3-fibrinogen binding assessed by plasmon resonance.

Conclusions/interpretation

C3 incorporation into clots from diabetic fibrinogen is enhanced and adversely affects fibrinolysis. This may be one novel mechanism for compromised clot lysis in diabetes, potentially offering a new therapeutic target.
Literatur
1.
Zurück zum Zitat Berry C, Tardif JC, Bourassa MG (2007) Coronary heart disease in patients with diabetes: part I: recent advances in prevention and noninvasive management. J Am Coll Cardiol 49:631–642PubMedCrossRef Berry C, Tardif JC, Bourassa MG (2007) Coronary heart disease in patients with diabetes: part I: recent advances in prevention and noninvasive management. J Am Coll Cardiol 49:631–642PubMedCrossRef
2.
Zurück zum Zitat Fatah K, Silveira A, Tornvall P, Karpe F, Blomback M, Hamsten A (1996) Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost 76:535–540PubMed Fatah K, Silveira A, Tornvall P, Karpe F, Blomback M, Hamsten A (1996) Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb Haemost 76:535–540PubMed
3.
Zurück zum Zitat Undas A, Podolec P, Zawilska K et al (2009) Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke. Stroke 40:1499–1501PubMedCrossRef Undas A, Podolec P, Zawilska K et al (2009) Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke. Stroke 40:1499–1501PubMedCrossRef
4.
Zurück zum Zitat Collet JP, Park D, Lesty C et al (2000) Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 20:1354–1361PubMedCrossRef Collet JP, Park D, Lesty C et al (2000) Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 20:1354–1361PubMedCrossRef
5.
Zurück zum Zitat Collet JP, Allali Y, Lesty C et al (2006) Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol 26:2567–2573PubMedCrossRef Collet JP, Allali Y, Lesty C et al (2006) Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol 26:2567–2573PubMedCrossRef
6.
Zurück zum Zitat Ajjan R, Lim BC, Standeven KF et al (2008) Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood 111:643–650PubMedCrossRef Ajjan R, Lim BC, Standeven KF et al (2008) Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood 111:643–650PubMedCrossRef
7.
Zurück zum Zitat Jörneskog G, Egberg N, Fagrell B et al (1996) Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 39:1519–1523PubMedCrossRef Jörneskog G, Egberg N, Fagrell B et al (1996) Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 39:1519–1523PubMedCrossRef
8.
Zurück zum Zitat Targher G, Chonchol M, Zoppini G, Franchini M (2011) Hemostatic disorders in type 1 diabetes mellitus. Semin Thromb Hemost 37:58–65PubMedCrossRef Targher G, Chonchol M, Zoppini G, Franchini M (2011) Hemostatic disorders in type 1 diabetes mellitus. Semin Thromb Hemost 37:58–65PubMedCrossRef
9.
Zurück zum Zitat Jörneskog G, Hansson LO, Wallen NH, Yngen M, Blombäck M (2003) Increased plasma fibrin gel porosity in patients with type I diabetes during continuous subcutaneous insulin infusion. J Thromb Haemost 1:1195–1201PubMedCrossRef Jörneskog G, Hansson LO, Wallen NH, Yngen M, Blombäck M (2003) Increased plasma fibrin gel porosity in patients with type I diabetes during continuous subcutaneous insulin infusion. J Thromb Haemost 1:1195–1201PubMedCrossRef
10.
Zurück zum Zitat Pieters M, Covic N, du Loots T et al (2006) The effect of glycaemic control on fibrin network structure of type 2 diabetic subjects. Thromb Haemost 96:623–629PubMed Pieters M, Covic N, du Loots T et al (2006) The effect of glycaemic control on fibrin network structure of type 2 diabetic subjects. Thromb Haemost 96:623–629PubMed
11.
Zurück zum Zitat Ridker PM, Silvertown JD (2008) Inflammation, C-reactive protein, and atherothrombosis. J Periodontol 79:1544–1551PubMedCrossRef Ridker PM, Silvertown JD (2008) Inflammation, C-reactive protein, and atherothrombosis. J Periodontol 79:1544–1551PubMedCrossRef
12.
Zurück zum Zitat Ajjan R, Grant PJ, Futers TS et al (2005) Complement C3 and C-reactive protein levels in patients with stable coronary artery disease. Thromb Haemost 94:1048–1053PubMed Ajjan R, Grant PJ, Futers TS et al (2005) Complement C3 and C-reactive protein levels in patients with stable coronary artery disease. Thromb Haemost 94:1048–1053PubMed
13.
Zurück zum Zitat Amara U, Flierl MA, Rittirsch D et al (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185:5628–5636PubMedCrossRef Amara U, Flierl MA, Rittirsch D et al (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185:5628–5636PubMedCrossRef
14.
Zurück zum Zitat Tedesco F, Fischetti F, Pausa M, Dobrina A, Sim RB, Daha MR (1999) Complement-endothelial cell interactions: pathophysiological implications. Mol Immunol 36:261–268PubMedCrossRef Tedesco F, Fischetti F, Pausa M, Dobrina A, Sim RB, Daha MR (1999) Complement-endothelial cell interactions: pathophysiological implications. Mol Immunol 36:261–268PubMedCrossRef
15.
Zurück zum Zitat Shats-Tseytlina EA, Nair CH, Dhall DP (1994) Complement activation: a new participant in the modulation of fibrin gel characteristics and the progression of atherosclerosis? Blood Coagul Fibrinolysis 5:529–535PubMed Shats-Tseytlina EA, Nair CH, Dhall DP (1994) Complement activation: a new participant in the modulation of fibrin gel characteristics and the progression of atherosclerosis? Blood Coagul Fibrinolysis 5:529–535PubMed
16.
Zurück zum Zitat Distelmaier K, Adlbrecht C, Jakowitsch J et al (2009) Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. Thromb Haemost 102:564–572PubMed Distelmaier K, Adlbrecht C, Jakowitsch J et al (2009) Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. Thromb Haemost 102:564–572PubMed
17.
Zurück zum Zitat Schroeder V, Carter AM, Dunne J, Mansfield MW, Grant PJ (2010) Proinflammatory and hypofibrinolytic phenotype in healthy first-degree relatives of patients with type 2 diabetes. J Thromb Haemost 8:2080–2082PubMedCrossRef Schroeder V, Carter AM, Dunne J, Mansfield MW, Grant PJ (2010) Proinflammatory and hypofibrinolytic phenotype in healthy first-degree relatives of patients with type 2 diabetes. J Thromb Haemost 8:2080–2082PubMedCrossRef
18.
Zurück zum Zitat Muscari A, Massarelli G, Bastagli L et al (2000) Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur Heart J 21:1081–1090PubMedCrossRef Muscari A, Massarelli G, Bastagli L et al (2000) Relationship of serum C3 to fasting insulin, risk factors and previous ischaemic events in middle-aged men. Eur Heart J 21:1081–1090PubMedCrossRef
19.
Zurück zum Zitat Engström G, Hedblad B, Janzon L, Lindgärde F (2007) Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study. Eur J Cardiovasc Prev Rehabil 14:392–397PubMedCrossRef Engström G, Hedblad B, Janzon L, Lindgärde F (2007) Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study. Eur J Cardiovasc Prev Rehabil 14:392–397PubMedCrossRef
20.
Zurück zum Zitat Carter AM, Prasad UK, Grant PJ (2009) Complement C3 and C-reactive protein in male survivors of myocardial infarction. Atherosclerosis 203:538–543PubMedCrossRef Carter AM, Prasad UK, Grant PJ (2009) Complement C3 and C-reactive protein in male survivors of myocardial infarction. Atherosclerosis 203:538–543PubMedCrossRef
21.
Zurück zum Zitat Clauss A (1957) Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol 17:237–246PubMedCrossRef Clauss A (1957) Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol 17:237–246PubMedCrossRef
22.
Zurück zum Zitat Carter AM, Cymbalista CM, Spector TD, Grant PJ, EuroCLOT Investigators (2007) Heritability of clot formation, morphology, and lysis: the EuroCLOT study. Arterioscler Thromb Vasc Biol 27:2783–2789PubMedCrossRef Carter AM, Cymbalista CM, Spector TD, Grant PJ, EuroCLOT Investigators (2007) Heritability of clot formation, morphology, and lysis: the EuroCLOT study. Arterioscler Thromb Vasc Biol 27:2783–2789PubMedCrossRef
23.
Zurück zum Zitat Van den Berg CW, van Dijk H, Capel PJ (1989) Rapid isolation and characterization of native mouse complement components C3 and C5. J Immunol Methods 122:73–78PubMedCrossRef Van den Berg CW, van Dijk H, Capel PJ (1989) Rapid isolation and characterization of native mouse complement components C3 and C5. J Immunol Methods 122:73–78PubMedCrossRef
24.
Zurück zum Zitat Deutsch DG, Mertz ET (1970) Plasminogen: purification from human plasma by affinity chromatography. Science 170:1095–1096PubMedCrossRef Deutsch DG, Mertz ET (1970) Plasminogen: purification from human plasma by affinity chromatography. Science 170:1095–1096PubMedCrossRef
25.
Zurück zum Zitat Smith KA, Adamson PJ, Pease RJ et al (2011) Interactions between factor XIII and the {alpha}C region of fibrinogen. Blood 117:3460–3468PubMedCrossRef Smith KA, Adamson PJ, Pease RJ et al (2011) Interactions between factor XIII and the {alpha}C region of fibrinogen. Blood 117:3460–3468PubMedCrossRef
26.
Zurück zum Zitat Bobbink IW, Tekelenburg WL, Sixma JJ, de Boer HC, Banga JD, de Groot PG (1997) Glycated proteins modulate tissue-plasminogen activator-catalyzed plasminogen activation. Biochem Biophys Res Commun 240:595–601PubMedCrossRef Bobbink IW, Tekelenburg WL, Sixma JJ, de Boer HC, Banga JD, de Groot PG (1997) Glycated proteins modulate tissue-plasminogen activator-catalyzed plasminogen activation. Biochem Biophys Res Commun 240:595–601PubMedCrossRef
27.
Zurück zum Zitat Heliövaara MK, Teppo AM, Karonen SL, Tuominen JA, Ebeling P (2006) Improved glycaemia in type 1 diabetes results in decreased levels of soluble adhesion molecules with no change in serum adiponectin or most acute phase proteins. Exp Clin Endocrinol Diabetes 114:295–300PubMedCrossRef Heliövaara MK, Teppo AM, Karonen SL, Tuominen JA, Ebeling P (2006) Improved glycaemia in type 1 diabetes results in decreased levels of soluble adhesion molecules with no change in serum adiponectin or most acute phase proteins. Exp Clin Endocrinol Diabetes 114:295–300PubMedCrossRef
28.
Zurück zum Zitat Morimoto Y, Taniguchi H, Yamashiro Y, Ejiri K, Baba S, Arimoto Y (1988) Complements in diabetes mellitus: activation of complement system evidenced by C3d elevation in IDDM. Diabetes Res Clin Pract 5:309–312PubMedCrossRef Morimoto Y, Taniguchi H, Yamashiro Y, Ejiri K, Baba S, Arimoto Y (1988) Complements in diabetes mellitus: activation of complement system evidenced by C3d elevation in IDDM. Diabetes Res Clin Pract 5:309–312PubMedCrossRef
29.
Zurück zum Zitat Sundsmo JS, Papin RA, Wood L et al (1985) Complement activation in type 1 human diabetes. Clin Immunol Immunopathol 35:211–225PubMedCrossRef Sundsmo JS, Papin RA, Wood L et al (1985) Complement activation in type 1 human diabetes. Clin Immunol Immunopathol 35:211–225PubMedCrossRef
30.
Zurück zum Zitat Charlesworth JA, Timmermans V, Golding J et al (1987) The complement system in type 1 (insulin-dependent) diabetes. Diabetologia 30:372–379PubMedCrossRef Charlesworth JA, Timmermans V, Golding J et al (1987) The complement system in type 1 (insulin-dependent) diabetes. Diabetologia 30:372–379PubMedCrossRef
31.
Zurück zum Zitat Cannon CP (2008) Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: clinical implications. Am J Cardiol 102:5L–9LPubMedCrossRef Cannon CP (2008) Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: clinical implications. Am J Cardiol 102:5L–9LPubMedCrossRef
32.
Zurück zum Zitat Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070PubMedCrossRef Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070PubMedCrossRef
33.
Zurück zum Zitat Henschen-Edman AH (2001) Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease. Ann N Y Acad Sci 936:580–593PubMedCrossRef Henschen-Edman AH (2001) Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease. Ann N Y Acad Sci 936:580–593PubMedCrossRef
34.
Zurück zum Zitat Gogitidze Joy N, Hedrington MS, Briscoe VJ, Tate DB, Ertl AC, Davis SN (2010) Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care 33:1529–1535PubMedCrossRef Gogitidze Joy N, Hedrington MS, Briscoe VJ, Tate DB, Ertl AC, Davis SN (2010) Effects of acute hypoglycemia on inflammatory and pro-atherothrombotic biomarkers in individuals with type 1 diabetes and healthy individuals. Diabetes Care 33:1529–1535PubMedCrossRef
35.
Zurück zum Zitat Ajjan RA, Robinson EJ, Alzahrani SH, Grant PJ, Heller SR (2010) The effect of hypoglycemia on fibrin clot structure and fibrinolysis in individuals with type 1 diabetes. Diabetes 59(Suppl 1):402-PP (Abstract) Ajjan RA, Robinson EJ, Alzahrani SH, Grant PJ, Heller SR (2010) The effect of hypoglycemia on fibrin clot structure and fibrinolysis in individuals with type 1 diabetes. Diabetes 59(Suppl 1):402-PP (Abstract)
36.
37.
Zurück zum Zitat Medved L, Nieuwenhuizen W (2003) Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost 89:409–419PubMed Medved L, Nieuwenhuizen W (2003) Molecular mechanisms of initiation of fibrinolysis by fibrin. Thromb Haemost 89:409–419PubMed
38.
Zurück zum Zitat Seya T, Nagasawa S, Matsukura M, Hasegawa H, Atkinson JP (1985) Generation of C3d, g and C3d by urokinase-treated plasma in association with fibrinolysis. Complement 2:165–174PubMed Seya T, Nagasawa S, Matsukura M, Hasegawa H, Atkinson JP (1985) Generation of C3d, g and C3d by urokinase-treated plasma in association with fibrinolysis. Complement 2:165–174PubMed
39.
Zurück zum Zitat Tsurupa G, Yakovlev S, McKee P, Medved L (2010) Noncovalent interaction of alpha(2)-antiplasmin with fibrin(ogen): localization of alpha(2)-antiplasmin-binding sites. Biochemistry 49:7643–7651PubMedCrossRef Tsurupa G, Yakovlev S, McKee P, Medved L (2010) Noncovalent interaction of alpha(2)-antiplasmin with fibrin(ogen): localization of alpha(2)-antiplasmin-binding sites. Biochemistry 49:7643–7651PubMedCrossRef
Metadaten
Titel
A novel mechanism for hypofibrinolysis in diabetes: the role of complement C3
verfasst von
K. Hess
S. H. Alzahrani
M. Mathai
V. Schroeder
A. M. Carter
G. Howell
T. Koko
M. W. J. Strachan
J. F. Price
K. A. Smith
P. J. Grant
R. A. Ajjan
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 4/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2301-7

Weitere Artikel der Ausgabe 4/2012

Diabetologia 4/2012 Zur Ausgabe

List of Refereees

LIST OF REFEREES

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.