Skip to main content
Erschienen in: Diabetologia 3/2012

01.03.2012 | Article

Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle

verfasst von: I. Chopra, H. F. Li, H. Wang, K. A. Webster

Erschienen in: Diabetologia | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Muscle may experience hypoglycaemia during ischaemia or insulin infusion. During severe hypoglycaemia energy production is blocked, and an increase of AMP:ATP activates the energy sensor and putative insulin-sensitiser AMP-activated protein kinase (AMPK). AMPK promotes energy conservation and survival by shutting down anabolism and activating catabolic pathways. We investigated the molecular mechanism of a unique glucose stress defence pathway involving AMPK-dependent, insulin-independent activation of the insulin signalling pathway.

Methods

Cardiac or skeletal myocytes were subjected to glucose and insulin-free incubation for increasing intervals up to 20 h. AMPK, and components of the insulin signalling pathway and their targets were quantified by western blot using phosphor-specific antibodies. Phosphomimetics were used to determine the function of IRS-1 Ser789 phosphorylation and in vitro [32P]ATP kinase assays were used to measure the phosphorylation of the purified insulin receptor by AMPK.

Results

Glucose deprivation increased Akt-Thr308 and Akt-Ser473 phosphorylation by almost tenfold. Phosphorylation of glycogen synthase kinase 3 beta increased in parallel, but phosphorylation of ribosomal 70S subunit-S6 protein kinase and mammalian target of rapamycin decreased. AMPK inhibitors blocked and aminoimidazole carboxamide ribonucleotide (AICAR) mimicked the effects of glucose starvation. Glucose deprivation increased the phosphorylation of IRS-1 on serine-789, but phosphomimetics revealed that this conferred negative regulation. Glucose deprivation enhanced tyrosine phosphorylation of IRS-1 and the insulin receptor, effects that were blocked by AMPK inhibition and mimicked by AICAR. In vitro kinase assays using purified proteins confirmed that the insulin receptor is a direct target of AMPK.

Conclusions/interpretation

AMPK phosphorylates and activates the insulin receptor, providing a direct link between AMPK and the insulin signalling pathway; this pathway promotes energy conservation and survival of muscle exposed to severe glucose deprivation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523PubMedCrossRef Gallagher EJ, Leroith D, Karnieli E (2010) Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt Sinai J Med 77:511–523PubMedCrossRef
3.
Zurück zum Zitat King MJ, Sale GJ (1990) Dephosphorylation of insulin-receptor autophosphorylation sites by particulate and soluble phosphotyrosyl-protein phosphatases. Biochem J 266:251–259PubMed King MJ, Sale GJ (1990) Dephosphorylation of insulin-receptor autophosphorylation sites by particulate and soluble phosphotyrosyl-protein phosphatases. Biochem J 266:251–259PubMed
4.
Zurück zum Zitat Gupte A, Mora S (2006) Activation of the Cbl insulin signaling pathway in cardiac muscle; dysregulation in obesity and diabetes. Biochem Biophys Res Commun 342:751–757PubMedCrossRef Gupte A, Mora S (2006) Activation of the Cbl insulin signaling pathway in cardiac muscle; dysregulation in obesity and diabetes. Biochem Biophys Res Commun 342:751–757PubMedCrossRef
5.
Zurück zum Zitat Kanzaki M, Mora S, Hwang JB, Saltiel AR, Pessin JE (2004) Atypical protein kinase C (PKCzeta/lambda) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. J Cell Biol 164:279–290PubMedCrossRef Kanzaki M, Mora S, Hwang JB, Saltiel AR, Pessin JE (2004) Atypical protein kinase C (PKCzeta/lambda) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. J Cell Biol 164:279–290PubMedCrossRef
6.
Zurück zum Zitat Vasudevan KM, Garraway LA (2010) AKT signaling in physiology and disease. Curr Top Microbiol Immunol 347:105–133PubMedCrossRef Vasudevan KM, Garraway LA (2010) AKT signaling in physiology and disease. Curr Top Microbiol Immunol 347:105–133PubMedCrossRef
8.
Zurück zum Zitat Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71PubMedCrossRef Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71PubMedCrossRef
9.
Zurück zum Zitat Shiraishi I, Melendez J, Ahn Y et al (2004) Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ Res 94:884–891PubMedCrossRef Shiraishi I, Melendez J, Ahn Y et al (2004) Nuclear targeting of Akt enhances kinase activity and survival of cardiomyocytes. Circ Res 94:884–891PubMedCrossRef
10.
Zurück zum Zitat Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 104:1240–1252PubMedCrossRef Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 104:1240–1252PubMedCrossRef
11.
Zurück zum Zitat Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109PubMedCrossRef Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109PubMedCrossRef
12.
Zurück zum Zitat Weigert C, Kron M, Kalbacher H et al (2008) Interplay and effects of temporal changes in the phosphorylation state of serine-302, -307, and -318 of insulin receptor substrate-1 on insulin action in skeletal muscle cells. Mol Endocrinol 22:2729–2740PubMedCrossRef Weigert C, Kron M, Kalbacher H et al (2008) Interplay and effects of temporal changes in the phosphorylation state of serine-302, -307, and -318 of insulin receptor substrate-1 on insulin action in skeletal muscle cells. Mol Endocrinol 22:2729–2740PubMedCrossRef
13.
Zurück zum Zitat Bouzakri K, Koistinen HA, Zierath JR (2005) Molecular mechanisms of skeletal muscle insulin resistance in type 2 diabetes. Curr Diabetes Rev 1:167–174PubMedCrossRef Bouzakri K, Koistinen HA, Zierath JR (2005) Molecular mechanisms of skeletal muscle insulin resistance in type 2 diabetes. Curr Diabetes Rev 1:167–174PubMedCrossRef
14.
Zurück zum Zitat Bossenmaier B, Strack V, Stoyanov B et al (2000) Serine residues 1177/78/82 of the insulin receptor are required for substrate phosphorylation but not autophosphorylation. Diabetes 49:889–895PubMedCrossRef Bossenmaier B, Strack V, Stoyanov B et al (2000) Serine residues 1177/78/82 of the insulin receptor are required for substrate phosphorylation but not autophosphorylation. Diabetes 49:889–895PubMedCrossRef
15.
Zurück zum Zitat Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402PubMedCrossRef Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402PubMedCrossRef
16.
Zurück zum Zitat Um SH, Frigerio F, Watanabe M et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205PubMedCrossRef Um SH, Frigerio F, Watanabe M et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200–205PubMedCrossRef
17.
Zurück zum Zitat Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005:pe4PubMedCrossRef Zick Y (2005) Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE 2005:pe4PubMedCrossRef
18.
Zurück zum Zitat Qiao LY, Zhande R, Jetton TL, Zhou G, Sun XJ (2002) In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem 277:26530–26539PubMedCrossRef Qiao LY, Zhande R, Jetton TL, Zhou G, Sun XJ (2002) In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem 277:26530–26539PubMedCrossRef
19.
Zurück zum Zitat Horike N, Takemori H, Katoh Y et al (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278:18440–18447PubMedCrossRef Horike N, Takemori H, Katoh Y et al (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278:18440–18447PubMedCrossRef
20.
Zurück zum Zitat Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916PubMedCrossRef Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916PubMedCrossRef
21.
Zurück zum Zitat Zakikhani M, Blouin MJ, Piura E, Pollak MN (2010) Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 123:271–279PubMedCrossRef Zakikhani M, Blouin MJ, Piura E, Pollak MN (2010) Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 123:271–279PubMedCrossRef
22.
Zurück zum Zitat Ning J, Clemmons DR (2010) AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation. Mol Endocrinol 24:1218–1229PubMedCrossRef Ning J, Clemmons DR (2010) AMP-activated protein kinase inhibits IGF-I signaling and protein synthesis in vascular smooth muscle cells via stimulation of insulin receptor substrate 1 S794 and tuberous sclerosis 2 S1345 phosphorylation. Mol Endocrinol 24:1218–1229PubMedCrossRef
23.
Zurück zum Zitat Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase—development of the energy sensor concept. J Physiol 574:7–15PubMedCrossRef Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase—development of the energy sensor concept. J Physiol 574:7–15PubMedCrossRef
24.
Zurück zum Zitat Arad M, Seidman CE, Seidman JG (2007) AMP-activated protein kinase in the heart: role during health and disease. Circ Res 100:474–488PubMedCrossRef Arad M, Seidman CE, Seidman JG (2007) AMP-activated protein kinase in the heart: role during health and disease. Circ Res 100:474–488PubMedCrossRef
25.
Zurück zum Zitat Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416PubMedCrossRef Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416PubMedCrossRef
26.
Zurück zum Zitat Walker PS, Ramlal T, Sarabia V et al (1990) Glucose transport activity in L6 muscle cells is regulated by the co-ordinate control of subcellular glucose transporter distribution, biosynthesis, and mRNA transcription. J Biol Chem 265:1516–1523PubMed Walker PS, Ramlal T, Sarabia V et al (1990) Glucose transport activity in L6 muscle cells is regulated by the co-ordinate control of subcellular glucose transporter distribution, biosynthesis, and mRNA transcription. J Biol Chem 265:1516–1523PubMed
27.
Zurück zum Zitat Sasson S, Kaiser N, Dan-Goor M et al (1997) Substrate autoregulation of glucose transport: hexose 6-phosphate mediates the cellular distribution of glucose transporters. Diabetologia 40:30–39PubMedCrossRef Sasson S, Kaiser N, Dan-Goor M et al (1997) Substrate autoregulation of glucose transport: hexose 6-phosphate mediates the cellular distribution of glucose transporters. Diabetologia 40:30–39PubMedCrossRef
28.
Zurück zum Zitat Itani SI, Saha AK, Kurowski TG, Coffin HR, Tornheim K, Ruderman NB (2003) Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase. Diabetes 52:1635–1640PubMedCrossRef Itani SI, Saha AK, Kurowski TG, Coffin HR, Tornheim K, Ruderman NB (2003) Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase. Diabetes 52:1635–1640PubMedCrossRef
29.
Zurück zum Zitat Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341PubMedCrossRef Towler MC, Hardie DG (2007) AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328–341PubMedCrossRef
30.
Zurück zum Zitat Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99:12825–12830PubMedCrossRef Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99:12825–12830PubMedCrossRef
31.
Zurück zum Zitat Takikita S, Myerowitz R, Zaal K, Raben N, Plotz PH (2009) Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches. Mol Genet Metab 96:208–217PubMedCrossRef Takikita S, Myerowitz R, Zaal K, Raben N, Plotz PH (2009) Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches. Mol Genet Metab 96:208–217PubMedCrossRef
32.
Zurück zum Zitat Luo M, Reyna S, Wang L et al (2005) Identification of insulin receptor substrate 1 serine/threonine phosphorylation sites using mass spectrometry analysis: regulatory role of serine 1223. Endocrinology 146:4410–4416PubMedCrossRef Luo M, Reyna S, Wang L et al (2005) Identification of insulin receptor substrate 1 serine/threonine phosphorylation sites using mass spectrometry analysis: regulatory role of serine 1223. Endocrinology 146:4410–4416PubMedCrossRef
33.
Zurück zum Zitat Chaudary N, Naydenova Z, Shuralyova I, Coe IR (2004) Hypoxia regulates the adenosine transporter, mENT1, in the murine cardiomyocyte cell line, HL-1. Cardiovasc Res 61:780–788PubMedCrossRef Chaudary N, Naydenova Z, Shuralyova I, Coe IR (2004) Hypoxia regulates the adenosine transporter, mENT1, in the murine cardiomyocyte cell line, HL-1. Cardiovasc Res 61:780–788PubMedCrossRef
34.
Zurück zum Zitat Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL (1995) Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95:2195–2204PubMedCrossRef Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL (1995) Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95:2195–2204PubMedCrossRef
35.
Zurück zum Zitat McManus EJ, Alessi DR (2002) TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. Nat Cell Biol 4:E214–E216PubMedCrossRef McManus EJ, Alessi DR (2002) TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. Nat Cell Biol 4:E214–E216PubMedCrossRef
36.
Zurück zum Zitat Harrington LS, Findlay GM, Lamb RF (2005) Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 30:35–42PubMedCrossRef Harrington LS, Findlay GM, Lamb RF (2005) Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem Sci 30:35–42PubMedCrossRef
37.
Zurück zum Zitat Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226PubMedCrossRef Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226PubMedCrossRef
38.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRef Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101PubMedCrossRef
39.
Zurück zum Zitat Esposito DL, Li Y, Cama A, Quon MJ (2001) Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142:2833–2840PubMedCrossRef Esposito DL, Li Y, Cama A, Quon MJ (2001) Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142:2833–2840PubMedCrossRef
40.
Zurück zum Zitat Desbois C, Capeau J, Hainault I et al (1992) Differential role of insulin receptor autophosphorylation sites 1162 and 1163 in the long-term insulin stimulation of glucose transport, glycogenesis, and protein synthesis. J Biol Chem 267:13488–13497PubMed Desbois C, Capeau J, Hainault I et al (1992) Differential role of insulin receptor autophosphorylation sites 1162 and 1163 in the long-term insulin stimulation of glucose transport, glycogenesis, and protein synthesis. J Biol Chem 267:13488–13497PubMed
41.
Zurück zum Zitat Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280:32081–32089PubMedCrossRef Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N (2005) Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280:32081–32089PubMedCrossRef
42.
Zurück zum Zitat Bollag GE, Roth RA, Beaudoin J, Mochly-Rosen D, Koshland DE Jr (1986) Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci U S A 83:5822–5824PubMedCrossRef Bollag GE, Roth RA, Beaudoin J, Mochly-Rosen D, Koshland DE Jr (1986) Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity. Proc Natl Acad Sci U S A 83:5822–5824PubMedCrossRef
43.
Zurück zum Zitat Pillay TS, Xiao S, Keranen L, Olefsky JM (2004) Regulation of the insulin receptor by protein kinase C isoenzymes: preferential interaction with beta isoenzymes and interaction with the catalytic domain of betaII. Cell Signal 16:97–104PubMedCrossRef Pillay TS, Xiao S, Keranen L, Olefsky JM (2004) Regulation of the insulin receptor by protein kinase C isoenzymes: preferential interaction with beta isoenzymes and interaction with the catalytic domain of betaII. Cell Signal 16:97–104PubMedCrossRef
44.
Zurück zum Zitat Maddux BA, Goldfine ID (1991) Evidence that insulin plus ATP may induce a conformational change in the beta subunit of the insulin receptor without inducing receptor autophosphorylation. J Biol Chem 266:6731–6736PubMed Maddux BA, Goldfine ID (1991) Evidence that insulin plus ATP may induce a conformational change in the beta subunit of the insulin receptor without inducing receptor autophosphorylation. J Biol Chem 266:6731–6736PubMed
45.
Zurück zum Zitat Roth RA, Beaudoin J (1987) Phosphorylation of purified insulin receptor by cAMP kinase. Diabetes 36:123–126PubMedCrossRef Roth RA, Beaudoin J (1987) Phosphorylation of purified insulin receptor by cAMP kinase. Diabetes 36:123–126PubMedCrossRef
46.
Zurück zum Zitat Horman S, Vertommen D, Heath R (2006) Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 281:5335–5340PubMedCrossRef Horman S, Vertommen D, Heath R (2006) Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 281:5335–5340PubMedCrossRef
47.
Zurück zum Zitat Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10:151–162PubMedCrossRef Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10:151–162PubMedCrossRef
48.
Zurück zum Zitat Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278:8199–8211PubMedCrossRef Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278:8199–8211PubMedCrossRef
49.
Zurück zum Zitat Giraud J, Leshan R, Lee YH, White MF (2004) Nutrient-dependent and insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302 correlates with increased insulin signaling. J Biol Chem 279:3447–3454PubMedCrossRef Giraud J, Leshan R, Lee YH, White MF (2004) Nutrient-dependent and insulin-stimulated phosphorylation of insulin receptor substrate-1 on serine 302 correlates with increased insulin signaling. J Biol Chem 279:3447–3454PubMedCrossRef
Metadaten
Titel
Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle
verfasst von
I. Chopra
H. F. Li
H. Wang
K. A. Webster
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 3/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2407-y

Weitere Artikel der Ausgabe 3/2012

Diabetologia 3/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.