Skip to main content
Erschienen in: Diabetologia 3/2012

01.03.2012 | Article

Hepatic leptin signalling and subdiaphragmatic vagal efferents are not required for leptin-induced increases of plasma IGF binding protein-2 (IGFBP-2) in ob/ob mice

verfasst von: J. Levi, F. K. Huynh, H. C. Denroche, U. H. Neumann, M. M. Glavas, S. D. Covey, T. J. Kieffer

Erschienen in: Diabetologia | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The fat-derived hormone leptin plays a crucial role in the maintenance of normal body weight and energy expenditure as well as in glucose homeostasis. Recently, it was reported that the liver-derived protein, insulin-like growth factor binding protein-2 (IGFBP-2), is responsible for at least some of the glucose-normalising effects of leptin. However, the exact mechanism by which leptin upregulates IGFBP-2 production is unknown. Since it is believed that circulating IGFBP-2 is predominantly derived from the liver and leptin has been shown to have both direct and indirect actions on the liver, we hypothesised that leptin signalling in hepatocytes or via brain–liver vagal efferents may mediate leptin control of IGFBP-2 production.

Methods

To address our hypothesis, we assessed leptin action on glucose homeostasis and plasma IGFBP-2 levels in both leptin-deficient ob/ob mice with a liver-specific loss of leptin signalling and ob/ob mice with a subdiaphragmatic vagotomy. We also examined whether restoring hepatic leptin signalling in leptin receptor-deficient db/db mice could increase plasma IGFBP-2 levels.

Results

Continuous leptin administration increased plasma IGFBP-2 levels in a dose-dependent manner, in association with reduced plasma glucose and insulin levels. Interestingly, leptin was still able to increase plasma IGFBP-2 levels and improve glucose homeostasis in both ob/ob mouse models to the same extent as their littermate controls. Further, restoration of hepatic leptin signalling in db/db mice did not increase either hepatic or plasma IGFBP-2 levels.

Conclusions/interpretation

Taken together, these data indicate that hepatic leptin signalling and subdiaphragmatic vagal inputs are not required for leptin upregulation of plasma IGFBP-2 nor blood glucose lowering in ob/ob mice.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wheatcroft SB, Kearney MT (2009) IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends Endocrinol Metab 20:153–162PubMedCrossRef Wheatcroft SB, Kearney MT (2009) IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends Endocrinol Metab 20:153–162PubMedCrossRef
2.
Zurück zum Zitat Wheatcroft SB, Kearney MT, Shah AM et al (2007) IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 56:285–294PubMedCrossRef Wheatcroft SB, Kearney MT, Shah AM et al (2007) IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 56:285–294PubMedCrossRef
3.
Zurück zum Zitat Hedbacker K, Birsoy K, Wysocki RW et al (2010) Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab 11:11–22PubMedCrossRef Hedbacker K, Birsoy K, Wysocki RW et al (2010) Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab 11:11–22PubMedCrossRef
4.
Zurück zum Zitat Jones JI, Gockerman A, Busby WH Jr, Wright G, Clemmons DR (1993) Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the alpha 5 beta 1 integrin by means of its Arg-Gly-Asp sequence. Proc Natl Acad Sci U S A 90:10553–10557PubMedCrossRef Jones JI, Gockerman A, Busby WH Jr, Wright G, Clemmons DR (1993) Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the alpha 5 beta 1 integrin by means of its Arg-Gly-Asp sequence. Proc Natl Acad Sci U S A 90:10553–10557PubMedCrossRef
5.
Zurück zum Zitat Hoeflich A, Wu M, Mohan S et al (1999) Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain. Endocrinology 140:5488–5496PubMedCrossRef Hoeflich A, Wu M, Mohan S et al (1999) Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain. Endocrinology 140:5488–5496PubMedCrossRef
6.
Zurück zum Zitat DeMambro VE, Clemmons DR, Horton LG et al (2008) Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology 149:2051–2061PubMedCrossRef DeMambro VE, Clemmons DR, Horton LG et al (2008) Gender-specific changes in bone turnover and skeletal architecture in igfbp-2-null mice. Endocrinology 149:2051–2061PubMedCrossRef
7.
Zurück zum Zitat Ruan W, Lai M (2010) Insulin-like growth factor binding protein: a possible marker for the metabolic syndrome? Acta Diabetol 47:5–14PubMedCrossRef Ruan W, Lai M (2010) Insulin-like growth factor binding protein: a possible marker for the metabolic syndrome? Acta Diabetol 47:5–14PubMedCrossRef
8.
Zurück zum Zitat Asilmaz E, Cohen P, Miyazaki M et al (2004) Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J Clin Invest 113:414–424PubMed Asilmaz E, Cohen P, Miyazaki M et al (2004) Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. J Clin Invest 113:414–424PubMed
9.
Zurück zum Zitat Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC (1996) Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A 93:6231–6235PubMedCrossRef Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC (1996) Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A 93:6231–6235PubMedCrossRef
10.
Zurück zum Zitat Fei H, Okano HJ, Li C et al (1997) Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci U S A 94:7001–7005PubMedCrossRef Fei H, Okano HJ, Li C et al (1997) Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci U S A 94:7001–7005PubMedCrossRef
11.
Zurück zum Zitat Cohen B, Novick D, Rubinstein M (1996) Modulation of insulin activities by leptin. Science 274:1185–1188PubMedCrossRef Cohen B, Novick D, Rubinstein M (1996) Modulation of insulin activities by leptin. Science 274:1185–1188PubMedCrossRef
12.
Zurück zum Zitat White ME, Leaman DW, Ramsay TG, Kampman KA, Ernst CW, Osborne JM (1993) Insulin-like growth-factor binding protein (IGFBP) serum levels and hepatic IGFBP-2 and -3 mRNA expression in diabetic and insulin-treated swine (Sus scrofa). Comp Biochem Physiol B 106:341–347PubMedCrossRef White ME, Leaman DW, Ramsay TG, Kampman KA, Ernst CW, Osborne JM (1993) Insulin-like growth-factor binding protein (IGFBP) serum levels and hepatic IGFBP-2 and -3 mRNA expression in diabetic and insulin-treated swine (Sus scrofa). Comp Biochem Physiol B 106:341–347PubMedCrossRef
13.
Zurück zum Zitat Delhanty PJ, Han VK (1993) The expression of insulin-like growth factor (IGF)-binding protein-2 and IGF-II genes in the tissues of the developing ovine fetus. Endocrinology 132:41–52PubMedCrossRef Delhanty PJ, Han VK (1993) The expression of insulin-like growth factor (IGF)-binding protein-2 and IGF-II genes in the tissues of the developing ovine fetus. Endocrinology 132:41–52PubMedCrossRef
14.
Zurück zum Zitat German J, Kim F, Schwartz GJ et al (2009) Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 150:4502–4511PubMedCrossRef German J, Kim F, Schwartz GJ et al (2009) Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 150:4502–4511PubMedCrossRef
15.
Zurück zum Zitat Bluthe RM, Michaud B, Kelley KW, Dantzer R (1996) Vagotomy attenuates behavioural effects of interleukin-1 injected peripherally but not centrally. Neuroreport 7:1485–1488PubMedCrossRef Bluthe RM, Michaud B, Kelley KW, Dantzer R (1996) Vagotomy attenuates behavioural effects of interleukin-1 injected peripherally but not centrally. Neuroreport 7:1485–1488PubMedCrossRef
16.
Zurück zum Zitat Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213:1036–1037PubMedCrossRef Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ (1981) Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213:1036–1037PubMedCrossRef
17.
Zurück zum Zitat Coppari R, Ichinose M, Lee CE et al (2005) The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab 1:63–72PubMedCrossRef Coppari R, Ichinose M, Lee CE et al (2005) The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab 1:63–72PubMedCrossRef
18.
Zurück zum Zitat McMinn JE, Liu SM, Liu H et al (2005) Neuronal deletion of Lepr elicits diabesity in mice without affecting cold tolerance or fertility. Am J Physiol Endocrinol Metab 289:E403–E411PubMedCrossRef McMinn JE, Liu SM, Liu H et al (2005) Neuronal deletion of Lepr elicits diabesity in mice without affecting cold tolerance or fertility. Am J Physiol Endocrinol Metab 289:E403–E411PubMedCrossRef
19.
Zurück zum Zitat Huynh FK, Levi J, Denroche HC et al (2010) Disruption of hepatic leptin signaling protects mice from age- and diet-related glucose intolerance. Diabetes 59:3032–3040PubMedCrossRef Huynh FK, Levi J, Denroche HC et al (2010) Disruption of hepatic leptin signaling protects mice from age- and diet-related glucose intolerance. Diabetes 59:3032–3040PubMedCrossRef
20.
Zurück zum Zitat Lam NT, Covey SD, Lewis JT et al (2006) Leptin resistance following over-expression of protein tyrosine phosphatase 1B in liver. J Mol Endocrinol 36:163–174PubMedCrossRef Lam NT, Covey SD, Lewis JT et al (2006) Leptin resistance following over-expression of protein tyrosine phosphatase 1B in liver. J Mol Endocrinol 36:163–174PubMedCrossRef
21.
Zurück zum Zitat Louis-Sylvestre J (1983) Validation of tests of completeness of vagotomy in rats. J Auton Nerv Syst 9:301–314PubMedCrossRef Louis-Sylvestre J (1983) Validation of tests of completeness of vagotomy in rats. J Auton Nerv Syst 9:301–314PubMedCrossRef
22.
Zurück zum Zitat Pocai A, Lam TK, Gutierrez-Juarez R et al (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031PubMedCrossRef Pocai A, Lam TK, Gutierrez-Juarez R et al (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031PubMedCrossRef
23.
Zurück zum Zitat Zawalich WS, Zawalich KC, Rasmussen H (1989) Cholinergic agonists prime the beta-cell to glucose stimulation. Endocrinology 125:2400–2406PubMedCrossRef Zawalich WS, Zawalich KC, Rasmussen H (1989) Cholinergic agonists prime the beta-cell to glucose stimulation. Endocrinology 125:2400–2406PubMedCrossRef
24.
Zurück zum Zitat Teff KL, Townsend RR (2004) Prolonged mild hyperglycemia induces vagally mediated compensatory increase in C-peptide secretion in humans. J Clin Endocrinol Metab 89:5606–5613PubMedCrossRef Teff KL, Townsend RR (2004) Prolonged mild hyperglycemia induces vagally mediated compensatory increase in C-peptide secretion in humans. J Clin Endocrinol Metab 89:5606–5613PubMedCrossRef
25.
Zurück zum Zitat Pocai A, Obici S, Schwartz GJ, Rossetti L (2005) A brain–liver circuit regulates glucose homeostasis. Cell Metab 1:53–61PubMedCrossRef Pocai A, Obici S, Schwartz GJ, Rossetti L (2005) A brain–liver circuit regulates glucose homeostasis. Cell Metab 1:53–61PubMedCrossRef
26.
Zurück zum Zitat Neary MT, Batterham RL (2009) Gut hormones: implications for the treatment of obesity. Pharmacol Ther 124:44–56PubMedCrossRef Neary MT, Batterham RL (2009) Gut hormones: implications for the treatment of obesity. Pharmacol Ther 124:44–56PubMedCrossRef
27.
Zurück zum Zitat Pelleymounter MA, Cullen MJ, Baker MB et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543PubMedCrossRef Pelleymounter MA, Cullen MJ, Baker MB et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543PubMedCrossRef
28.
Zurück zum Zitat Yu X, Park BH, Wang MY, Wang ZV, Unger RH (2008) Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci U S A 105:14070–14075PubMedCrossRef Yu X, Park BH, Wang MY, Wang ZV, Unger RH (2008) Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci U S A 105:14070–14075PubMedCrossRef
29.
Zurück zum Zitat Wang MY, Chen L, Clark GO et al (2010) Leptin therapy in insulin-deficient type I diabetes. Proc Natl Acad Sci U S A 107:4813–4819PubMedCrossRef Wang MY, Chen L, Clark GO et al (2010) Leptin therapy in insulin-deficient type I diabetes. Proc Natl Acad Sci U S A 107:4813–4819PubMedCrossRef
30.
Zurück zum Zitat Denroche HC, Levi J, Wideman RD et al (2011) Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes 60:1414–1423PubMedCrossRef Denroche HC, Levi J, Wideman RD et al (2011) Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes 60:1414–1423PubMedCrossRef
31.
Zurück zum Zitat Cumin F, Baum HP, Levens N (1996) Leptin is cleared from the circulation primarily by the kidney. Int J Obes Relat Metab Disord 20:1120–1126PubMed Cumin F, Baum HP, Levens N (1996) Leptin is cleared from the circulation primarily by the kidney. Int J Obes Relat Metab Disord 20:1120–1126PubMed
32.
Zurück zum Zitat Ceccarini G, Flavell RR, Butelman ER et al (2009) PET imaging of leptin biodistribution and metabolism in rodents and primates. Cell Metab 10:148–159PubMedCrossRef Ceccarini G, Flavell RR, Butelman ER et al (2009) PET imaging of leptin biodistribution and metabolism in rodents and primates. Cell Metab 10:148–159PubMedCrossRef
33.
Zurück zum Zitat Cohen P, Zhao C, Cai X et al (2001) Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 108:1113–1121PubMed Cohen P, Zhao C, Cai X et al (2001) Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 108:1113–1121PubMed
34.
Zurück zum Zitat Guo K, McMinn JE, Ludwig T et al (2007) Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology 148:3987–3997PubMedCrossRef Guo K, McMinn JE, Ludwig T et al (2007) Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities. Endocrinology 148:3987–3997PubMedCrossRef
35.
Zurück zum Zitat Fujikawa T, Chuang JC, Sakata I, Ramadori G, Coppari R (2010) Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc Natl Acad Sci U S A 107:17391–17396PubMedCrossRef Fujikawa T, Chuang JC, Sakata I, Ramadori G, Coppari R (2010) Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc Natl Acad Sci U S A 107:17391–17396PubMedCrossRef
36.
Zurück zum Zitat Sharma A, Bartell SM, Baile CA et al (2010) Hepatic gene expression profiling reveals key pathways involved in leptin-mediated weight loss in ob/ob mice. PLoS One 5:e12147PubMedCrossRef Sharma A, Bartell SM, Baile CA et al (2010) Hepatic gene expression profiling reveals key pathways involved in leptin-mediated weight loss in ob/ob mice. PLoS One 5:e12147PubMedCrossRef
37.
Zurück zum Zitat Liu L, Karkanias GB, Morales JC et al (1998) Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J Biol Chem 273:31160–31167PubMedCrossRef Liu L, Karkanias GB, Morales JC et al (1998) Intracerebroventricular leptin regulates hepatic but not peripheral glucose fluxes. J Biol Chem 273:31160–31167PubMedCrossRef
38.
Zurück zum Zitat Kita K, Nagao K, Taneda N et al (2002) Insulin-like growth factor binding protein-2 gene expression can be regulated by diet manipulation in several tissues of young chickens. J Nutr 132:145–151PubMed Kita K, Nagao K, Taneda N et al (2002) Insulin-like growth factor binding protein-2 gene expression can be regulated by diet manipulation in several tissues of young chickens. J Nutr 132:145–151PubMed
39.
Zurück zum Zitat Fornoni A, Rosenzweig SA, Lenz O, Rivera A, Striker GE, Elliot SJ (2006) Low insulin-like growth factor binding protein-2 expression is responsible for increased insulin receptor substrate-1 phosphorylation in mesangial cells from mice susceptible to glomerulosclerosis. Endocrinology 147:3547–3554PubMedCrossRef Fornoni A, Rosenzweig SA, Lenz O, Rivera A, Striker GE, Elliot SJ (2006) Low insulin-like growth factor binding protein-2 expression is responsible for increased insulin receptor substrate-1 phosphorylation in mesangial cells from mice susceptible to glomerulosclerosis. Endocrinology 147:3547–3554PubMedCrossRef
40.
Zurück zum Zitat Ilvesmaki V, Liu J, Heikkila P, Kahri AI, Voutilainen R (1998) Expression of insulin-like growth factor binding protein 1-6 genes in adrenocortical tumors and pheochromocytomas. Horm Metab Res 30:619–623PubMedCrossRef Ilvesmaki V, Liu J, Heikkila P, Kahri AI, Voutilainen R (1998) Expression of insulin-like growth factor binding protein 1-6 genes in adrenocortical tumors and pheochromocytomas. Horm Metab Res 30:619–623PubMedCrossRef
41.
Zurück zum Zitat Takeo C, Ikeda K, Horie-Inoue K, Inoue S (2009) Identification of Igf2, Igfbp2 and Enpp 2 as estrogen-responsive genes in rat hippocampus. Endocr J 56:113–120PubMedCrossRef Takeo C, Ikeda K, Horie-Inoue K, Inoue S (2009) Identification of Igf2, Igfbp2 and Enpp 2 as estrogen-responsive genes in rat hippocampus. Endocr J 56:113–120PubMedCrossRef
42.
Zurück zum Zitat Claudio M, Benjamim F, Riccardo B, Massimiliano C, Francesco B, Luciano C (2010) Adipocytes IGFBP-2 expression in prepubertal obese children. Obesity (Silver Spring) 18:2055–2057CrossRef Claudio M, Benjamim F, Riccardo B, Massimiliano C, Francesco B, Luciano C (2010) Adipocytes IGFBP-2 expression in prepubertal obese children. Obesity (Silver Spring) 18:2055–2057CrossRef
43.
Zurück zum Zitat Li Z, Picard F (2010) Modulation of IGFBP2 mRNA expression in white adipose tissue upon aging and obesity. Horm Metab Res 42:787–791PubMedCrossRef Li Z, Picard F (2010) Modulation of IGFBP2 mRNA expression in white adipose tissue upon aging and obesity. Horm Metab Res 42:787–791PubMedCrossRef
44.
Zurück zum Zitat Kielar D, Clark JS, Ciechanowicz A, Kurzawski G, Sulikowski T, Naruszewicz M (1998) Leptin receptor isoforms expressed in human adipose tissue. Metabolism 47:844–847PubMedCrossRef Kielar D, Clark JS, Ciechanowicz A, Kurzawski G, Sulikowski T, Naruszewicz M (1998) Leptin receptor isoforms expressed in human adipose tissue. Metabolism 47:844–847PubMedCrossRef
45.
Zurück zum Zitat Hoggard N, Mercer JG, Rayner DV, Moar K, Trayhurn P, Williams LM (1997) Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem Biophys Res Commun 232:383–387PubMedCrossRef Hoggard N, Mercer JG, Rayner DV, Moar K, Trayhurn P, Williams LM (1997) Localization of leptin receptor mRNA splice variants in murine peripheral tissues by RT-PCR and in situ hybridization. Biochem Biophys Res Commun 232:383–387PubMedCrossRef
Metadaten
Titel
Hepatic leptin signalling and subdiaphragmatic vagal efferents are not required for leptin-induced increases of plasma IGF binding protein-2 (IGFBP-2) in ob/ob mice
verfasst von
J. Levi
F. K. Huynh
H. C. Denroche
U. H. Neumann
M. M. Glavas
S. D. Covey
T. J. Kieffer
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 3/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2426-8

Weitere Artikel der Ausgabe 3/2012

Diabetologia 3/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.