Skip to main content
Erschienen in: Diabetologia 5/2014

01.05.2014 | Article

Adiponectin reduces thermogenesis by inhibiting brown adipose tissue activation in mice

verfasst von: Liping Qiao, Hyung sun Yoo, Chris Bosco, Bonggi Lee, Gen-Sheng Feng, Jerome Schaack, Nai-Wen Chi, Jianhua Shao

Erschienen in: Diabetologia | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Adiponectin is an adipocyte-derived hormone that plays an important role in energy homeostasis. The main objective of this study was to investigate whether or not adiponectin regulates brown adipose tissue (BAT) activation and thermogenesis.

Methods

Core body temperatures (CBTs) of genetic mouse models were monitored at room temperature and during cold exposure. Cultured brown adipocytes and viral vector-mediated gene transduction were used to study the regulatory effects of adiponectin on Ucp1 gene expression and the underlying mechanisms.

Results

The CBTs of adiponectin knockout mice (Adipoq −/−) were significantly higher than those of wild type (WT) mice both at room temperature and during the cold (4°C) challenge. Conversely, reconstitution of adiponectin in Adipoq −/− mice significantly blunted β adrenergic receptor agonist-induced thermogenesis of interscapular BAT. After 10 days of intermittent cold exposure, Adipoq −/− mice exhibited higher UCP1 expression and more brown-like structure in inguinal fat than WT mice. Paradoxically, we found that the anti-thermogenic effect of adiponectin requires neither AdipoR1 nor AdipoR2, two well-known adiponectin receptors. In sharp contrast to the anti-thermogenic effects of adiponectin, AdipoR1 and especially AdipoR2 promote BAT activation. Mechanistically, adiponectin was found to inhibit Ucp1 gene expression by suppressing β3-adrenergic receptor expression in brown adipocytes.

Conclusions/interpretation

This study demonstrates that adiponectin suppresses thermogenesis, which is likely to be a mechanism whereby adiponectin reduces energy expenditure.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452PubMedCrossRef Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452PubMedCrossRef
2.
3.
Zurück zum Zitat Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedCrossRef Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedCrossRef
4.
Zurück zum Zitat van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRef van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508PubMedCrossRef
5.
Zurück zum Zitat Saito M, Okamatsu-Ogura Y, Matsushita M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531PubMedCentralPubMedCrossRef Saito M, Okamatsu-Ogura Y, Matsushita M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209PubMedCrossRef Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209PubMedCrossRef
7.
8.
Zurück zum Zitat Boström P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedCentralPubMedCrossRef Boström P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Cinti S (2002) Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 25:823–835PubMedCrossRef Cinti S (2002) Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ. J Endocrinol Invest 25:823–835PubMedCrossRef
10.
Zurück zum Zitat Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281PubMedCentralPubMedCrossRef Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404PubMedCentralPubMedCrossRef Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Kim J-Y, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637PubMedCentralPubMedCrossRef Kim J-Y, van de Wall E, Laplante M et al (2007) Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117:2621–2637PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Kubota N, Yano W, Kubota T et al (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68PubMedCrossRef Kubota N, Yano W, Kubota T et al (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68PubMedCrossRef
14.
Zurück zum Zitat Saito K, Arata S, Hosono T et al (2006) Adiponectin plays an important role in efficient energy usage under energy shortage. Biochim Biophys Acta 1761:709–716PubMedCrossRef Saito K, Arata S, Hosono T et al (2006) Adiponectin plays an important role in efficient energy usage under energy shortage. Biochim Biophys Acta 1761:709–716PubMedCrossRef
15.
Zurück zum Zitat Kajimura D, Lee HW, Riley KJ et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915PubMedCrossRef Kajimura D, Lee HW, Riley KJ et al (2013) Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metab 17:901–915PubMedCrossRef
16.
Zurück zum Zitat Combs TP, Pajvani UB, Berg AH et al (2004) A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145:367–383PubMedCrossRef Combs TP, Pajvani UB, Berg AH et al (2004) A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145:367–383PubMedCrossRef
18.
Zurück zum Zitat Wedellová Z, Dietrich J, Siklová-Vítková M et al (2011) Adiponectin inhibits spontaneous and catecholamine-induced lipolysis in human adipocytes of non-obese subjects through AMPK-dependent mechanisms. Physiol Res 60:139–148PubMed Wedellová Z, Dietrich J, Siklová-Vítková M et al (2011) Adiponectin inhibits spontaneous and catecholamine-induced lipolysis in human adipocytes of non-obese subjects through AMPK-dependent mechanisms. Physiol Res 60:139–148PubMed
19.
Zurück zum Zitat Dong M, Yang X, Lim S et al (2013) Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab 18:118–129PubMedCentralPubMedCrossRef Dong M, Yang X, Lim S et al (2013) Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab 18:118–129PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Qiao L, MacLean PS, You H et al (2006) Knocking down liver ccaat/enhancer-binding protein alpha by adenovirus-transduced silent interfering ribonucleic acid improves hepatic gluconeogenesis and lipid homeostasis in db/db mice. Endocrinology 147:3060–3069PubMedCrossRef Qiao L, MacLean PS, You H et al (2006) Knocking down liver ccaat/enhancer-binding protein alpha by adenovirus-transduced silent interfering ribonucleic acid improves hepatic gluconeogenesis and lipid homeostasis in db/db mice. Endocrinology 147:3060–3069PubMedCrossRef
21.
Zurück zum Zitat Qiao L, Kinney B, Yoo HS et al (2012) Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. Diabetes 61:1463–1470PubMedCentralPubMedCrossRef Qiao L, Kinney B, Yoo HS et al (2012) Adiponectin increases skeletal muscle mitochondrial biogenesis by suppressing mitogen-activated protein kinase phosphatase-1. Diabetes 61:1463–1470PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Qiao L, Zou C, van der Westhuyzen DR, Shao J (2008) Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes 57:1824–1833PubMedCentralPubMedCrossRef Qiao L, Zou C, van der Westhuyzen DR, Shao J (2008) Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes 57:1824–1833PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295PubMedCrossRef Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295PubMedCrossRef
24.
Zurück zum Zitat Yeh T-YJ, Beiswenger KK, Li P et al (2009) Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes 58:2476–2485PubMedCentralPubMedCrossRef Yeh T-YJ, Beiswenger KK, Li P et al (2009) Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice. Diabetes 58:2476–2485PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Zechner C, Lai L, Zechner JF et al (2010) Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 12:633–642PubMedCentralPubMedCrossRef Zechner C, Lai L, Zechner JF et al (2010) Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 12:633–642PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Tseng Y-H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004PubMedCentralPubMedCrossRef Tseng Y-H, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Blaak EE, van Baak MA, Kempen KP, Saris WH (1993) Role of alpha- and beta-adrenoceptors in sympathetically mediated thermogenesis. Am J Physiol 264:E11–E17PubMed Blaak EE, van Baak MA, Kempen KP, Saris WH (1993) Role of alpha- and beta-adrenoceptors in sympathetically mediated thermogenesis. Am J Physiol 264:E11–E17PubMed
28.
Zurück zum Zitat Iwabu M, Yamauchi T, Okada-Iwabu M et al (2010) Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464:1313–1319PubMedCrossRef Iwabu M, Yamauchi T, Okada-Iwabu M et al (2010) Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464:1313–1319PubMedCrossRef
30.
Zurück zum Zitat Tanner CB, Madsen SR, Hallowell DM et al (2013) Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am J Physiol Endocrinol Metab 305:E1018–E1029PubMedCrossRef Tanner CB, Madsen SR, Hallowell DM et al (2013) Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am J Physiol Endocrinol Metab 305:E1018–E1029PubMedCrossRef
31.
Zurück zum Zitat Leick L, Wojtaszewski JFP, Johansen ST et al (2008) PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 294:E463–E474PubMedCrossRef Leick L, Wojtaszewski JFP, Johansen ST et al (2008) PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 294:E463–E474PubMedCrossRef
32.
Zurück zum Zitat Yamauchi T, Kamon J, Ito Y et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769PubMedCrossRef Yamauchi T, Kamon J, Ito Y et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769PubMedCrossRef
33.
Zurück zum Zitat Chao P-T, Yang L, Aja S et al (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13:573–583PubMedCentralPubMedCrossRef Chao P-T, Yang L, Aja S et al (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13:573–583PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Thureson-Klein A, Mill-Hyde B, Barnard T, Lagercrantz H (1976) Ultrastructural effects of chemical sympathectomy on brown adipose tissue. J Neurocytol 5:677–690PubMedCrossRef Thureson-Klein A, Mill-Hyde B, Barnard T, Lagercrantz H (1976) Ultrastructural effects of chemical sympathectomy on brown adipose tissue. J Neurocytol 5:677–690PubMedCrossRef
35.
Zurück zum Zitat Hug C, Wang J, Ahmad NS et al (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A 101:10308–10313PubMedCentralPubMedCrossRef Hug C, Wang J, Ahmad NS et al (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A 101:10308–10313PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Svensson E, Olsen L, Mörck C et al (2011) The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis. PLoS ONE 6:e21343PubMedCentralPubMedCrossRef Svensson E, Olsen L, Mörck C et al (2011) The adiponectin receptor homologs in C. elegans promote energy utilization and homeostasis. PLoS ONE 6:e21343PubMedCentralPubMedCrossRef
Metadaten
Titel
Adiponectin reduces thermogenesis by inhibiting brown adipose tissue activation in mice
verfasst von
Liping Qiao
Hyung sun Yoo
Chris Bosco
Bonggi Lee
Gen-Sheng Feng
Jerome Schaack
Nai-Wen Chi
Jianhua Shao
Publikationsdatum
01.05.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 5/2014
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3180-5

Weitere Artikel der Ausgabe 5/2014

Diabetologia 5/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.