Skip to main content
Erschienen in: Diabetologia 9/2014

01.09.2014 | Article

A novel DPP IV-resistant C-terminally extended glucagon analogue exhibits weight-lowering and diabetes-protective effects in high-fat-fed mice mediated through glucagon and GLP-1 receptor activation

verfasst von: Aisling M. Lynch, Nupur Pathak, Varun Pathak, Finbarr P. M. O’Harte, Peter R. Flatt, Nigel Irwin, Victor A. Gault

Erschienen in: Diabetologia | Ausgabe 9/2014

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Modification of the structure of glucagon could provide useful compounds for the potential treatment of obesity-related diabetes.

Methods

This study evaluated N-acetyl-glucagon, (d-Ser2)glucagon and an analogue of (d-Ser2)glucagon with the addition of nine amino acids from the C-terminal of exendin(1-39), namely (d-Ser2)glucagon-exe.

Results

All analogues were resistant to dipeptidyl peptidase IV degradation. N-Acetyl-glucagon lacked acute insulinotropic effects in BRIN BD11 cells, whereas (d-Ser2)glucagon and (d-Ser2)glucagon-exe evoked significant (p < 0.001) insulin release. (d-Ser2)glucagon-exe stimulated cAMP production (p < 0.001) in glucagon- and GLP-1-receptor (GLP-1R)-transfected cells but not in glucose-dependent insulinotropic polypeptide-receptor-transfected cells. In normal mice, N-acetyl-glucagon and (d-Ser2)glucagon retained glucagon-like effects of increasing (p < 0.001) plasma glucose and insulin levels. (d-Ser2)glucagon-exe was devoid of hyperglycaemic actions but substantially (p < 0.001) increased plasma insulin levels. (d-Ser2)glucagon-exe reduced the glycaemic excursion (p < 0.01) and increased the insulin secretory (p < 0.01) response following a glucose challenge 12 h after administration. Studies in GLP-1R knockout mice confirmed involvement of the GLP-1R pathway in the biological actions of (d-Ser2)glucagon-exe. Twice-daily administration of (d-Ser2)glucagon-exe to high-fat-fed mice for 28 days significantly (p < 0.05 to p < 0.001) reduced body weight, energy intake and non-fasting glucose levels, as well as increasing insulin concentrations. Glucose tolerance and insulin sensitivity were significantly (p < 0.01) improved and energy expenditure, O2 consumption and locomotor activity were (p < 0.05 to p < 0.001) augmented. The metabolic benefits were accompanied by increases in pancreatic islet number (p < 0.001) and area (p < 0.05), as well as beta cell area (p < 0.05). Beneficial effects were largely retained for 14 days following cessation of treatment.

Conclusions/interpretation

This study emphasises the potential of (d-Ser2)glucagon-exe for the treatment of obesity-related diabetes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Baggio L, Drucker DJ (2007) Biology of Incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157PubMedCrossRef Baggio L, Drucker DJ (2007) Biology of Incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157PubMedCrossRef
2.
Zurück zum Zitat Thorens B (1995) Glucagon-like peptide-1 and control of insulin secretion. Diabetes Metab 21:311–318 Thorens B (1995) Glucagon-like peptide-1 and control of insulin secretion. Diabetes Metab 21:311–318
3.
Zurück zum Zitat McGirr R, Guizzetti L, Dhanvantari S (2013) The sorting of proglucagon to secretory granules is mediated by carboxypeptidase E and intrinsic sorting signals. J Endocrinol 217:229–240PubMedCrossRef McGirr R, Guizzetti L, Dhanvantari S (2013) The sorting of proglucagon to secretory granules is mediated by carboxypeptidase E and intrinsic sorting signals. J Endocrinol 217:229–240PubMedCrossRef
4.
Zurück zum Zitat Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261:11880–11889PubMed Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 261:11880–11889PubMed
5.
Zurück zum Zitat Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475PubMedCrossRef Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119:1467–1475PubMedCrossRef
6.
Zurück zum Zitat Sinclair EM, Drucker DJ (2005) Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology (Bethesda) 20:357–365CrossRef Sinclair EM, Drucker DJ (2005) Proglucagon-derived peptides: mechanisms of action and therapeutic potential. Physiology (Bethesda) 20:357–365CrossRef
7.
Zurück zum Zitat Habegger K, Heppner K, Geary N, Bartness T, DiMarchi R, Tschop M (2010) The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6:689–697PubMedCentralPubMedCrossRef Habegger K, Heppner K, Geary N, Bartness T, DiMarchi R, Tschop M (2010) The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6:689–697PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Fehmann HC, Goke R, Goke B (1992) Glucagon-like peptide-1(7-37)/(7-36)amide is a new incretin. Mol Cell Endocrinol 85:C39–C44PubMedCrossRef Fehmann HC, Goke R, Goke B (1992) Glucagon-like peptide-1(7-37)/(7-36)amide is a new incretin. Mol Cell Endocrinol 85:C39–C44PubMedCrossRef
9.
Zurück zum Zitat Lam NT, Kieffer TJ (2002) The multifaceted potential of glucagon-like peptide-1 as a therapeutic agent. Minerva Endocrinol 27:79–93PubMed Lam NT, Kieffer TJ (2002) The multifaceted potential of glucagon-like peptide-1 as a therapeutic agent. Minerva Endocrinol 27:79–93PubMed
10.
Zurück zum Zitat Madsbad S (2009) Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)—preclinical and clinical results. Best Pract Res Clin Endocrinol Metab 23:463–477PubMedCrossRef Madsbad S (2009) Exenatide and liraglutide: different approaches to develop GLP-1 receptor agonists (incretin mimetics)—preclinical and clinical results. Best Pract Res Clin Endocrinol Metab 23:463–477PubMedCrossRef
11.
Zurück zum Zitat Maida A, Lovshi JA, Baggio LL, Drucker DJ (2008) The glucagon-like peptide 1 receptor agonist oxyntomodulin enhances beta-cell function but does not inhibit gastric emptying in mice. Endocrinology 149:5670–5678PubMedCrossRef Maida A, Lovshi JA, Baggio LL, Drucker DJ (2008) The glucagon-like peptide 1 receptor agonist oxyntomodulin enhances beta-cell function but does not inhibit gastric emptying in mice. Endocrinology 149:5670–5678PubMedCrossRef
12.
Zurück zum Zitat Kosinski JR, Hubert J, Carrington P et al (2012) The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity 20:1566–1571PubMedCentralPubMedCrossRef Kosinski JR, Hubert J, Carrington P et al (2012) The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity 20:1566–1571PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Kerr B, Flatt P, Gault V (2010) (D-Ser2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem Pharmacol 80:1727–1735PubMedCrossRef Kerr B, Flatt P, Gault V (2010) (D-Ser2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem Pharmacol 80:1727–1735PubMedCrossRef
14.
Zurück zum Zitat Santoprete A, Capito E, Carrington P et al (2011) DPP-IV-resistant, long-acting oxyntomodulin derivatives. J Pept Sci 17:270–280PubMedCrossRef Santoprete A, Capito E, Carrington P et al (2011) DPP-IV-resistant, long-acting oxyntomodulin derivatives. J Pept Sci 17:270–280PubMedCrossRef
15.
Zurück zum Zitat Day J, Gelfanov V, Smiley D et al (2012) Optimisation of co-agonism at GLP-1 and glucagon receptors to safely maximise weight reduction in DIO-rodents. BioPolymers (Pept Sci) 98:443–450CrossRef Day J, Gelfanov V, Smiley D et al (2012) Optimisation of co-agonism at GLP-1 and glucagon receptors to safely maximise weight reduction in DIO-rodents. BioPolymers (Pept Sci) 98:443–450CrossRef
16.
Zurück zum Zitat McClenaghan NH, Barnett CR, Ah-Sing E et al (1996) Characterization of novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes 45:1132–1140PubMedCrossRef McClenaghan NH, Barnett CR, Ah-Sing E et al (1996) Characterization of novel glucose-responsive insulin-secreting cell line, BRIN-BD11, produced by electrofusion. Diabetes 45:1132–1140PubMedCrossRef
17.
Zurück zum Zitat Flatt PR, Bailey CJ (1981) Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20:573–577PubMedCrossRef Flatt PR, Bailey CJ (1981) Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20:573–577PubMedCrossRef
18.
Zurück zum Zitat Gault VA, Bhat VK, Irwin N, Flatt PR (2013) A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J Biol Chem 288:35581–35591PubMedCrossRef Gault VA, Bhat VK, Irwin N, Flatt PR (2013) A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J Biol Chem 288:35581–35591PubMedCrossRef
19.
Zurück zum Zitat Gault VA, Porter DW, Irwin N, Flatt PR (2011) Comparison of sub-chronic metabolic effects of stable forms of naturally occurring GIP(1-30) and GIP(1-42) in high-fat fed mice. J Endocrinol 208:265–271PubMed Gault VA, Porter DW, Irwin N, Flatt PR (2011) Comparison of sub-chronic metabolic effects of stable forms of naturally occurring GIP(1-30) and GIP(1-42) in high-fat fed mice. J Endocrinol 208:265–271PubMed
20.
Zurück zum Zitat Irwin N, Montgomery IA, Moffett RC, Flatt PR (2013) Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice. Biochem Pharmacol 85:81–91PubMedCrossRef Irwin N, Montgomery IA, Moffett RC, Flatt PR (2013) Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice. Biochem Pharmacol 85:81–91PubMedCrossRef
21.
Zurück zum Zitat Ryan GJ, Foster KT, Jobe LJ (2011) Review of the therapeutic uses of liraglutide. Clin Ther 33:793–811PubMedCrossRef Ryan GJ, Foster KT, Jobe LJ (2011) Review of the therapeutic uses of liraglutide. Clin Ther 33:793–811PubMedCrossRef
22.
Zurück zum Zitat Akkati S, Sam KG, Tungha G (2011) Emergence of promising therapies in diabetes mellitus. J Clin Pharmacol 51:796–804PubMedCrossRef Akkati S, Sam KG, Tungha G (2011) Emergence of promising therapies in diabetes mellitus. J Clin Pharmacol 51:796–804PubMedCrossRef
23.
Zurück zum Zitat Irwin N, Flatt PR (2013) Enteroendocrine hormone mimetics for the treatment of obesity and diabetes. Curr Opin Pharmacol 13:989–995PubMedCrossRef Irwin N, Flatt PR (2013) Enteroendocrine hormone mimetics for the treatment of obesity and diabetes. Curr Opin Pharmacol 13:989–995PubMedCrossRef
24.
Zurück zum Zitat Sadry SA, Drucker DJ (2013) Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol 9:425–433PubMedCrossRef Sadry SA, Drucker DJ (2013) Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol 9:425–433PubMedCrossRef
25.
Zurück zum Zitat O’Harte FP, Franklin ZJ, Rafferty EP, Irwin N (2013) Characterisation of structurally modified analogues of glucagon as potential glucagon receptor antagonists. Mol Cell Endocrinol 381:26–34PubMedCrossRef O’Harte FP, Franklin ZJ, Rafferty EP, Irwin N (2013) Characterisation of structurally modified analogues of glucagon as potential glucagon receptor antagonists. Mol Cell Endocrinol 381:26–34PubMedCrossRef
26.
Zurück zum Zitat Irwin N, Franklin ZJ, O’Harte FP (2013) desHis(1)Glu(9)-glucagon-[mPEG] and desHis(1)Glu(9)(Lys(30)PAL)-glucagon: long-acting peptide-based PEGylated and acylated glucagon receptor antagonists with potential antidiabetic activity. Eur J Pharmacol 709:43–51PubMedCrossRef Irwin N, Franklin ZJ, O’Harte FP (2013) desHis(1)Glu(9)-glucagon-[mPEG] and desHis(1)Glu(9)(Lys(30)PAL)-glucagon: long-acting peptide-based PEGylated and acylated glucagon receptor antagonists with potential antidiabetic activity. Eur J Pharmacol 709:43–51PubMedCrossRef
28.
Zurück zum Zitat Unson CG, Macdonald D, Merrifield RB (1993) The role of histidine-1 in glucagon action. Arch Biochem Biophys 300:747–750PubMedCrossRef Unson CG, Macdonald D, Merrifield RB (1993) The role of histidine-1 in glucagon action. Arch Biochem Biophys 300:747–750PubMedCrossRef
29.
Zurück zum Zitat Parlevliet ET, Heijboer AC, Schröder-van der Elst JP et al (2008) Oxyntomodulin ameliorates glucose intolerance in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 294:E142–E147PubMedCrossRef Parlevliet ET, Heijboer AC, Schröder-van der Elst JP et al (2008) Oxyntomodulin ameliorates glucose intolerance in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 294:E142–E147PubMedCrossRef
30.
Zurück zum Zitat Simonsen L, Holst JJ, Madsen K, Deacon CF (2013) The C-terminal extension of exendin-4 provides additional metabolic stability when added to GLP-1, while there is minimal effect of truncating exendin-4 in anaesthetized pigs. Regul Pept 181:17–21PubMedCrossRef Simonsen L, Holst JJ, Madsen K, Deacon CF (2013) The C-terminal extension of exendin-4 provides additional metabolic stability when added to GLP-1, while there is minimal effect of truncating exendin-4 in anaesthetized pigs. Regul Pept 181:17–21PubMedCrossRef
31.
Zurück zum Zitat Tatarkiewicz K, Hargrove DM, Jodka CM et al (2014) A novel long-acting glucose-dependent insulinotropic peptide analogue: enhanced efficacy in normal and diabetic rodents. Diabetes Obes Metab 16:75–85PubMedCrossRef Tatarkiewicz K, Hargrove DM, Jodka CM et al (2014) A novel long-acting glucose-dependent insulinotropic peptide analogue: enhanced efficacy in normal and diabetic rodents. Diabetes Obes Metab 16:75–85PubMedCrossRef
32.
Zurück zum Zitat Gault VA, Irwin N, Harriott P, Flatt PR, O’Harte FP (2003) DPP IV resistance and insulin releasing activity of a novel di-substituted analogue of glucose-dependent insulinotropic polypeptide, (Ser2-Asp13)GIP. Cell Biol Int 27:41–46PubMedCrossRef Gault VA, Irwin N, Harriott P, Flatt PR, O’Harte FP (2003) DPP IV resistance and insulin releasing activity of a novel di-substituted analogue of glucose-dependent insulinotropic polypeptide, (Ser2-Asp13)GIP. Cell Biol Int 27:41–46PubMedCrossRef
33.
Zurück zum Zitat Druce MR, Minnion JS, Field BC et al (2009) Investigation of structure-activity relationships of oxyntomodulin (Oxm) using Oxm analogs. Endocrinology 150:1712–1722PubMedCrossRef Druce MR, Minnion JS, Field BC et al (2009) Investigation of structure-activity relationships of oxyntomodulin (Oxm) using Oxm analogs. Endocrinology 150:1712–1722PubMedCrossRef
34.
Zurück zum Zitat Underwood CR, Parthier C, Reedtz-Runge S (2010) Structural basis for ligand recognition of incretin receptors. Vitam Horm 84:251–278PubMedCrossRef Underwood CR, Parthier C, Reedtz-Runge S (2010) Structural basis for ligand recognition of incretin receptors. Vitam Horm 84:251–278PubMedCrossRef
35.
Zurück zum Zitat Claus TH, Pan CQ, Buxton JM et al (2007) Dual-acting peptide with prolonged glucagon-like peptide-1 receptor agonist and glucagon receptor antagonist activity for the treatment of type 2 diabetes. J Endocrinol 192:371–380PubMedCrossRef Claus TH, Pan CQ, Buxton JM et al (2007) Dual-acting peptide with prolonged glucagon-like peptide-1 receptor agonist and glucagon receptor antagonist activity for the treatment of type 2 diabetes. J Endocrinol 192:371–380PubMedCrossRef
36.
Zurück zum Zitat Pan CQ, Buxton JM, Yung SL et al (2006) Design of a long acting peptide functioning as both a glucagon-like peptide-1 receptor agonist and a glucagon receptor antagonist. J Biol Chem 281:12506–12515PubMedCrossRef Pan CQ, Buxton JM, Yung SL et al (2006) Design of a long acting peptide functioning as both a glucagon-like peptide-1 receptor agonist and a glucagon receptor antagonist. J Biol Chem 281:12506–12515PubMedCrossRef
37.
Zurück zum Zitat Brubaker PL, Drucker DJ (2004) Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145:2653–2659PubMedCrossRef Brubaker PL, Drucker DJ (2004) Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145:2653–2659PubMedCrossRef
38.
Zurück zum Zitat Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181PubMedCrossRef Nolan CJ, Damm P, Prentki M (2011) Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378:169–181PubMedCrossRef
39.
Zurück zum Zitat Irwin N, McClean PL, Cassidy RS et al (2007) Comparison of the anti-diabetic effects of GIP- and GLP-1-receptor activation in obese diabetic (ob/ob) mice: studies with DPP IV resistant N-AcGIP and exendin(1-39)amide. Diabetes Metab Res Rev 23:572–579PubMedCrossRef Irwin N, McClean PL, Cassidy RS et al (2007) Comparison of the anti-diabetic effects of GIP- and GLP-1-receptor activation in obese diabetic (ob/ob) mice: studies with DPP IV resistant N-AcGIP and exendin(1-39)amide. Diabetes Metab Res Rev 23:572–579PubMedCrossRef
40.
Zurück zum Zitat Irwin N, Hunter K, Montgomery IA, Flatt PR (2013) Comparison of independent and combined metabolic effects of chronic treatment with (pGlu-Gln)-CCK-8 and long-acting GLP-1 and GIP mimetics in high fat-fed mice. Diabetes Obes Metab 15:650–659PubMedCrossRef Irwin N, Hunter K, Montgomery IA, Flatt PR (2013) Comparison of independent and combined metabolic effects of chronic treatment with (pGlu-Gln)-CCK-8 and long-acting GLP-1 and GIP mimetics in high fat-fed mice. Diabetes Obes Metab 15:650–659PubMedCrossRef
41.
Zurück zum Zitat Irwin N, Hunter K, Frizzell N, Flatt PR (2009) Antidiabetic effects of sub-chronic activation of the GIP receptor alone and in combination with background exendin-4 therapy in high fat fed mice. Regul Pept 153:70–76PubMedCrossRef Irwin N, Hunter K, Frizzell N, Flatt PR (2009) Antidiabetic effects of sub-chronic activation of the GIP receptor alone and in combination with background exendin-4 therapy in high fat fed mice. Regul Pept 153:70–76PubMedCrossRef
Metadaten
Titel
A novel DPP IV-resistant C-terminally extended glucagon analogue exhibits weight-lowering and diabetes-protective effects in high-fat-fed mice mediated through glucagon and GLP-1 receptor activation
verfasst von
Aisling M. Lynch
Nupur Pathak
Varun Pathak
Finbarr P. M. O’Harte
Peter R. Flatt
Nigel Irwin
Victor A. Gault
Publikationsdatum
01.09.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 9/2014
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3296-7

Weitere Artikel der Ausgabe 9/2014

Diabetologia 9/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.