Skip to main content
Erschienen in: Diabetologia 1/2015

01.01.2015 | Review

SLC30A8 mutations in type 2 diabetes

verfasst von: Guy A. Rutter, Fabrice Chimienti

Erschienen in: Diabetologia | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

SLC30A8 encodes the secretory granule-resident and largely endocrine pancreas-restricted zinc transporter ZnT8. Interest in this gene product was sparked amongst diabetologists in 2007 when the first genome-wide association study for type 2 diabetes identified polymorphisms in SLC30A8 as affecting disease risk. Thus, the common polymorphism rs13266634 was associated with lowered beta cell function and a 14% increase in diabetes abundance per risk (C) allele. This non-synonymous variant encodes a tryptophan-to-arginine switch at position 325 in the protein’s intracellular carboxy-terminal domain, resulting in reduced zinc transport activity and, consequently, decreased intragranular zinc levels. Whereas insulin secretion from isolated islets is most often increased in mice inactivated for Slc30a8, null animals usually show impaired glucose tolerance and lowered circulating insulin. Since Slc30a8 null animals display little, if any, zinc secretion from islets, the lower plasma insulin levels could be explained by increased hepatic clearance as a result of lowered local zinc levels, or less efficient insulin action on target tissues. Despite the emerging consensus on the role of ZnT8 in glucose homeostasis, a recent genetic study in humans has unexpectedly identified loss-of-function SLC30A8 mutants that are associated with protection from diabetes. Here, we attempt to reconcile these apparently contradictory findings, implicating (1) differing degrees of inhibition of ZnT8 activity in carriers of common variants vs rare loss-of-function forms, (2) effects dependent on age or hypoxic beta cell stress. We propose that these variables conspire to affect both the size and the direction of the effect of SLC30A8 risk alleles in man.
Literatur
2.
Zurück zum Zitat Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194PubMedCrossRef Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194PubMedCrossRef
3.
Zurück zum Zitat Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B cell. Diabetologia 19:174–182PubMedCrossRef Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B cell. Diabetologia 19:174–182PubMedCrossRef
4.
Zurück zum Zitat Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory vesicles. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210:297–305PubMedCentralPubMed Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory vesicles. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210:297–305PubMedCentralPubMed
5.
Zurück zum Zitat Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740PubMedCrossRef Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740PubMedCrossRef
6.
Zurück zum Zitat Carroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF (1988) A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci U S A 85:8943–8947PubMedCentralPubMedCrossRef Carroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF (1988) A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci U S A 85:8943–8947PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef
9.
Zurück zum Zitat Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337PubMedCrossRef Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337PubMedCrossRef
10.
Zurück zum Zitat Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176PubMedCrossRef Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176PubMedCrossRef
11.
Zurück zum Zitat Gerber PA, Bellomo EA, Hodson DJ et al (2014) Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 57:1635–1644PubMedCentralPubMedCrossRef Gerber PA, Bellomo EA, Hodson DJ et al (2014) Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 57:1635–1644PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Boesgaard TW, Zilinskaite J, Vanttinen M et al (2008) The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients-the EUGENE2 study. Diabetologia 51:816–820PubMedCrossRef Boesgaard TW, Zilinskaite J, Vanttinen M et al (2008) The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients-the EUGENE2 study. Diabetologia 51:816–820PubMedCrossRef
13.
Zurück zum Zitat Cauchi S, Del GS, Choquet H et al (2010) Meta-analysis and functional effects of the SLC30A8 rs13266634 polymorphism on isolated human pancreatic islets. Mol Genet Metab 100:77–82PubMedCrossRef Cauchi S, Del GS, Choquet H et al (2010) Meta-analysis and functional effects of the SLC30A8 rs13266634 polymorphism on isolated human pancreatic islets. Mol Genet Metab 100:77–82PubMedCrossRef
14.
Zurück zum Zitat Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRef Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRef
15.
Zurück zum Zitat Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083PubMedCentralPubMedCrossRef Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Lemaire K, Ravier MA, Schraenen A et al (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A 106:14872–14877PubMedCentralPubMedCrossRef Lemaire K, Ravier MA, Schraenen A et al (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A 106:14872–14877PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524PubMedCentralPubMedCrossRef Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104:17040–17045PubMedCentralPubMedCrossRef Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104:17040–17045PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Wenzlau JM, Moua O, Sarkar SA et al (2008) SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes. Ann N Y Acad Sci 1150:256–259 Wenzlau JM, Moua O, Sarkar SA et al (2008) SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes. Ann N Y Acad Sci 1150:256–259
20.
Zurück zum Zitat Weijers RN (2010) Three-dimensional structure of beta-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W. Diabetol Metab Syndr 2:33PubMedCentralPubMedCrossRef Weijers RN (2010) Three-dimensional structure of beta-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W. Diabetol Metab Syndr 2:33PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Chao Y, Fu D (2004) Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 279:17173–17180PubMedCrossRef Chao Y, Fu D (2004) Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 279:17173–17180PubMedCrossRef
22.
Zurück zum Zitat Kim I, Kang ES, Yim YS et al (2010) A low-risk ZnT-8 allele (W325) for post-transplantation diabetes mellitus is protective against cyclosporin A-induced impairment of insulin secretion. Pharmacogenomics J 11:191–198PubMedCrossRef Kim I, Kang ES, Yim YS et al (2010) A low-risk ZnT-8 allele (W325) for post-transplantation diabetes mellitus is protective against cyclosporin A-induced impairment of insulin secretion. Pharmacogenomics J 11:191–198PubMedCrossRef
23.
Zurück zum Zitat Davidson HW, Wenzlau JM, O’Brien RM (2014) Zinc transporter 8 (ZnT8) and beta cell function. Trends Endocrinol Metab 25:415–424 Davidson HW, Wenzlau JM, O’Brien RM (2014) Zinc transporter 8 (ZnT8) and beta cell function. Trends Endocrinol Metab 25:415–424
24.
Zurück zum Zitat Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D (2007) ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem 282:14389–14393PubMedCrossRef Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D (2007) ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem 282:14389–14393PubMedCrossRef
25.
Zurück zum Zitat Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci U S A 109:7202–7207PubMedCentralPubMedCrossRef Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci U S A 109:7202–7207PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Pound LD, Sarkar SA, Benninger RK et al (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376PubMedCentralPubMedCrossRef Pound LD, Sarkar SA, Benninger RK et al (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Pound LD, Sarkar SA, Ustione A et al (2012) The physiological effects of deleting the mouse slc30a8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS One 7:e40972PubMedCentralPubMedCrossRef Pound LD, Sarkar SA, Ustione A et al (2012) The physiological effects of deleting the mouse slc30a8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS One 7:e40972PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Wijesekara N, Dai FF, Hardy AB et al (2010) Beta cell specific ZnT8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668PubMedCrossRef Wijesekara N, Dai FF, Hardy AB et al (2010) Beta cell specific ZnT8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668PubMedCrossRef
29.
Zurück zum Zitat Hardy AB, Wijesekara N, Genkin I et al (2012) Effects of high-fat diet feeding on Znt8-null mice: differences between beta-cell and global knockout of Znt8. Am J Physiol Endocrinol Metab 302:E1084–E1096PubMedCentralPubMedCrossRef Hardy AB, Wijesekara N, Genkin I et al (2012) Effects of high-fat diet feeding on Znt8-null mice: differences between beta-cell and global knockout of Znt8. Am J Physiol Endocrinol Metab 302:E1084–E1096PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2:1–2CrossRef Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2:1–2CrossRef
31.
Zurück zum Zitat Quarterman J, Mills CF, Humphries WR (1966) The reduced secretion of, and sensitivity to insulin in zinc-deficient rats. Biochem Biophys Res Commun 25:354–358PubMedCrossRef Quarterman J, Mills CF, Humphries WR (1966) The reduced secretion of, and sensitivity to insulin in zinc-deficient rats. Biochem Biophys Res Commun 25:354–358PubMedCrossRef
32.
Zurück zum Zitat Coulston L, Dandona P (1980) Insulin-like effect of zinc on adipocytes. Diabetes 29:665–667PubMedCrossRef Coulston L, Dandona P (1980) Insulin-like effect of zinc on adipocytes. Diabetes 29:665–667PubMedCrossRef
33.
Zurück zum Zitat Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18:333–338PubMedCrossRef Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18:333–338PubMedCrossRef
34.
35.
Zurück zum Zitat Kang ES, Kim MS, Kim YS et al (2008) A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes 57:1043–1047PubMedCrossRef Kang ES, Kim MS, Kim YS et al (2008) A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes 57:1043–1047PubMedCrossRef
36.
Zurück zum Zitat Kim BJ, Kim YH, Kim S et al (2000) Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 49:367–372PubMedCrossRef Kim BJ, Kim YH, Kim S et al (2000) Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 49:367–372PubMedCrossRef
37.
Zurück zum Zitat Chimienti F, Jourdan E, Favier A, Seve M (2001) Zinc resistance impairs sensitivity to oxidative stress in HeLa cells: protection through metallothioneins expression. Free Radic Biol Med 31:1179–1190PubMedCrossRef Chimienti F, Jourdan E, Favier A, Seve M (2001) Zinc resistance impairs sensitivity to oxidative stress in HeLa cells: protection through metallothioneins expression. Free Radic Biol Med 31:1179–1190PubMedCrossRef
38.
Zurück zum Zitat Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedCentralPubMedCrossRef Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCentralPubMedCrossRef Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat da Silva Xavier G, Bellomo EA, McGinty JA, French PM, Rutter GA (2013) Animal models of GWAS-identified type 2 diabetes genes. J Diabetes Res 2013:906590PubMedCentralPubMedCrossRef da Silva Xavier G, Bellomo EA, McGinty JA, French PM, Rutter GA (2013) Animal models of GWAS-identified type 2 diabetes genes. J Diabetes Res 2013:906590PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Kahn SE, Zraika S, Utzschneider KM, Hull RL (2009) The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52:1003–1012PubMedCentralPubMedCrossRef Kahn SE, Zraika S, Utzschneider KM, Hull RL (2009) The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52:1003–1012PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat van Hoek M, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128PubMedCentralPubMedCrossRef van Hoek M, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Lango H, Palmer CN, Morris AD et al (2008) Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57:3129–3135PubMedCentralPubMedCrossRef Lango H, Palmer CN, Morris AD et al (2008) Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57:3129–3135PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat da Silva Xavier G, Loder MK, McDonald A et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58:894–905PubMedCentralPubMedCrossRef da Silva Xavier G, Loder MK, McDonald A et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58:894–905PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat da Silva Xavier G, Mondragon A, Sun G et al (2012) Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2 null mice. Diabetologia 55:2667–2676PubMedCrossRef da Silva Xavier G, Mondragon A, Sun G et al (2012) Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2 null mice. Diabetologia 55:2667–2676PubMedCrossRef
48.
Zurück zum Zitat Tamaki M, Fujitani Y, Uchida T, Hirose T, Kawamori R, Watada H (2009) Downregulation of ZnT8 expression in pancreatic beta-cells of diabetic mice. Islets 1:124–128PubMedCrossRef Tamaki M, Fujitani Y, Uchida T, Hirose T, Kawamori R, Watada H (2009) Downregulation of ZnT8 expression in pancreatic beta-cells of diabetic mice. Islets 1:124–128PubMedCrossRef
Metadaten
Titel
SLC30A8 mutations in type 2 diabetes
verfasst von
Guy A. Rutter
Fabrice Chimienti
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 1/2015
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-014-3405-7

Weitere Artikel der Ausgabe 1/2015

Diabetologia 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.