Skip to main content
Erschienen in: Diabetologia 10/2016

04.07.2016 | Article

Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKα1 signalling in adipose tissue macrophages

verfasst von: Lei Zhang, Yi-Jing Han, Xian Zhang, Xin Wang, Bin Bao, Wei Qu, Jian Liu

Erschienen in: Diabetologia | Ausgabe 10/2016

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Inflammatory polarisation of adipose tissue macrophages (ATMs) plays a critical role in the development of obesity-associated metabolic diseases such as insulin resistance and diabetes. Our previous study indicated that dietary luteolin (LU) could prevent the establishment of insulin resistance in mice fed a high-fat diet (HFD). Here, we further investigated the effects of LU, which is a natural flavonoid, on pre-established insulin resistance and obesity-associated ATM polarisation in mice.

Methods

Five-week-old C57/BL6 mice were fed on a low-fat diet or HFD for 20 weeks, with some mice receiving supplementation with 0.01% LU from weeks 1 or 10 of the HFD to assess the actions of LU on insulin resistance and ATM polarisation. Furthermore, the role of LU in metabolic-dysfunction-associated macrophage phenotypes was investigated in vitro.

Results

Dietary LU supplementation, either for 20 weeks or from weeks 10 to 20 of an HFD, significantly improved insulin resistance in HFD-fed mice. In addition, inflammatory macrophage infiltration and polarisation were suppressed in mouse epididymal adipose tissues. Furthermore, LU treatment directly reversed lipopolysaccharide-stimulated and metabolism-regulated molecules, and induced inflammatory polarisation in mouse RAW264.7 cells and peritoneal cavity resident macrophages. Finally, using the selective AMP-activated protein kinase (AMPK) inhibitor compound C and Ampkα1 (also known as Prkaa1) silencing with siRNA, we found that LU activated AMPKα1 in macrophages to inhibit their inflammatory polarisation and enhanced insulin signals in adipocytes that were stimulated with macrophage-conditioned media.

Conclusions/interpretation

Dietary LU ameliorated insulin resistance in diet-induced obese mice by promoting AMPKα1 signalling in ATMs.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Huh JY, Park YJ, Ham M, Kim JB (2014) Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells 37:365–371CrossRefPubMedPubMedCentral Huh JY, Park YJ, Ham M, Kim JB (2014) Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells 37:365–371CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Lee BC, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842:446–462CrossRefPubMed Lee BC, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842:446–462CrossRefPubMed
3.
Zurück zum Zitat Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefPubMed Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445CrossRefPubMed
6.
7.
Zurück zum Zitat Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRefPubMedPubMedCentral Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Altintas MM, Azad A, Nayer B et al (2011) Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J Lipid Res 52:480–488CrossRefPubMedPubMedCentral Altintas MM, Azad A, Nayer B et al (2011) Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. J Lipid Res 52:480–488CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184CrossRefPubMedPubMedCentral Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wentworth JM, Naselli G, Brown WA et al (2010) Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59:1648–1656CrossRefPubMedPubMedCentral Wentworth JM, Naselli G, Brown WA et al (2010) Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59:1648–1656CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–3246CrossRefPubMedPubMedCentral Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR (2008) Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57:3239–3246CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Chmelar J, Chung KJ, Chavakis T (2013) The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance. Thromb Haemost 109:399–406CrossRefPubMed Chmelar J, Chung KJ, Chavakis T (2013) The role of innate immune cells in obese adipose tissue inflammation and development of insulin resistance. Thromb Haemost 109:399–406CrossRefPubMed
14.
Zurück zum Zitat Kratz M, Coats BR, Hisert KB et al (2014) Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20:614–625CrossRefPubMedPubMedCentral Kratz M, Coats BR, Hisert KB et al (2014) Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab 20:614–625CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Xu N, Zhang L, Dong J et al (2014) Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res 58:1258–1268CrossRefPubMed Xu N, Zhang L, Dong J et al (2014) Low-dose diet supplement of a natural flavonoid, luteolin, ameliorates diet-induced obesity and insulin resistance in mice. Mol Nutr Food Res 58:1258–1268CrossRefPubMed
16.
Zurück zum Zitat Wu W, Li D, Zong Y et al (2013) Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 18:8083–8094CrossRefPubMed Wu W, Li D, Zong Y et al (2013) Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 18:8083–8094CrossRefPubMed
17.
Zurück zum Zitat Ando C, Takahashi N, Hirai S et al (2009) Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett 583:3649–3654CrossRefPubMed Ando C, Takahashi N, Hirai S et al (2009) Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett 583:3649–3654CrossRefPubMed
18.
Zurück zum Zitat Chen CY, Peng WH, Tsai KD, Hsu SL (2007) Luteolin suppresses inflammation-associated gene expression by blocking NF-kB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 81:1602–1614CrossRefPubMed Chen CY, Peng WH, Tsai KD, Hsu SL (2007) Luteolin suppresses inflammation-associated gene expression by blocking NF-kB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 81:1602–1614CrossRefPubMed
19.
Zurück zum Zitat Steinberg GR, Schertzer JD (2014) AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol 92:340–345CrossRefPubMed Steinberg GR, Schertzer JD (2014) AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol 92:340–345CrossRefPubMed
20.
Zurück zum Zitat Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-kB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 89:667–676CrossRef Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-kB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 89:667–676CrossRef
21.
Zurück zum Zitat Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181:8633–8641CrossRefPubMedPubMedCentral Sag D, Carling D, Stout RD, Suttles J (2008) Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 181:8633–8641CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Galic S, Fullerton MD, Schertzer JD et al (2011) Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121:4903–4915CrossRefPubMedPubMedCentral Galic S, Fullerton MD, Schertzer JD et al (2011) Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest 121:4903–4915CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Liu JF, Ma Y, Wang Y, Du ZY, Shen JK, Peng HL (2011) Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. Phytother Res 25:588–596CrossRefPubMed Liu JF, Ma Y, Wang Y, Du ZY, Shen JK, Peng HL (2011) Reduction of lipid accumulation in HepG2 cells by luteolin is associated with activation of AMPK and mitigation of oxidative stress. Phytother Res 25:588–596CrossRefPubMed
24.
Zurück zum Zitat Xiao N, Mei F, Sun Y, Pan G, Liu B, Liu K (2014) Quercetin, luteolin, and epigallocatechin gallate promote glucose disposal in adipocytes with regulation of AMP-activated kinase and/or sirtuin 1 activity. Planta Med 80:993–1000CrossRefPubMed Xiao N, Mei F, Sun Y, Pan G, Liu B, Liu K (2014) Quercetin, luteolin, and epigallocatechin gallate promote glucose disposal in adipocytes with regulation of AMP-activated kinase and/or sirtuin 1 activity. Planta Med 80:993–1000CrossRefPubMed
25.
Zurück zum Zitat Dong J, Zhang X, Zhang L et al (2014) Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 55:363–374CrossRefPubMedPubMedCentral Dong J, Zhang X, Zhang L et al (2014) Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKα1/SIRT1. J Lipid Res 55:363–374CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Bao B, Chen YG, Zhang L et al (2013) Momordica charantia (bitter melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PLoS One 8:e84075CrossRefPubMedPubMedCentral Bao B, Chen YG, Zhang L et al (2013) Momordica charantia (bitter melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues. PLoS One 8:e84075CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Ceppo F, Berthou F, Jager J, Dumas K, Cormont M, Tanti JF (2014) Implication of the Tpl2 kinase in inflammatory changes and insulin resistance induced by the interaction between adipocytes and macrophages. Endocrinology 155:951–964CrossRefPubMed Ceppo F, Berthou F, Jager J, Dumas K, Cormont M, Tanti JF (2014) Implication of the Tpl2 kinase in inflammatory changes and insulin resistance induced by the interaction between adipocytes and macrophages. Endocrinology 155:951–964CrossRefPubMed
28.
Zurück zum Zitat Kim D, Kim J, Yoon JH et al (2014) CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 57:1456–1465CrossRefPubMed Kim D, Kim J, Yoon JH et al (2014) CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 57:1456–1465CrossRefPubMed
29.
Zurück zum Zitat Lopez-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9:31–59CrossRefPubMed Lopez-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9:31–59CrossRefPubMed
30.
Zurück zum Zitat Harris GK, Qian Y, Leonard SS, Sbarra DC, Shi X (2006) Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J Nutr 136:1517–1521PubMed Harris GK, Qian Y, Leonard SS, Sbarra DC, Shi X (2006) Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells. J Nutr 136:1517–1521PubMed
31.
Zurück zum Zitat Wang GG, Lu XH, Li W, Zhao X, Zhang C (2011) Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med 2011:323171PubMedPubMedCentral Wang GG, Lu XH, Li W, Zhao X, Zhang C (2011) Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Alternat Med 2011:323171PubMedPubMedCentral
32.
Zurück zum Zitat Wang G, Li W, Lu X, Bao P, Zhao X (2012) Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complications 26:259–265CrossRefPubMed Wang G, Li W, Lu X, Bao P, Zhao X (2012) Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complications 26:259–265CrossRefPubMed
33.
Zurück zum Zitat Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107CrossRefPubMed Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107CrossRefPubMed
34.
Zurück zum Zitat Zhou Y, Yu X, Chen H et al (2015) Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages. Cell Metab 22:1045–1058CrossRefPubMed Zhou Y, Yu X, Chen H et al (2015) Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages. Cell Metab 22:1045–1058CrossRefPubMed
35.
Zurück zum Zitat Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461CrossRefPubMed Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461CrossRefPubMed
37.
Zurück zum Zitat Herms A, Bosch M, Reddy BJ et al (2015) AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun 6:7176CrossRefPubMedPubMedCentral Herms A, Bosch M, Reddy BJ et al (2015) AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun 6:7176CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060CrossRefPubMedPubMedCentral Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060CrossRefPubMedPubMedCentral
Metadaten
Titel
Luteolin reduces obesity-associated insulin resistance in mice by activating AMPKα1 signalling in adipose tissue macrophages
verfasst von
Lei Zhang
Yi-Jing Han
Xian Zhang
Xin Wang
Bin Bao
Wei Qu
Jian Liu
Publikationsdatum
04.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 10/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4039-8

Weitere Artikel der Ausgabe 10/2016

Diabetologia 10/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.