Skip to main content
Erschienen in: Diabetologia 10/2016

15.07.2016 | Article

The hepatic FOXQ1 transcription factor regulates glucose metabolism in mice

verfasst von: Ying Cui, Aijun Qiao, Tao Jiao, Huabing Zhang, Yuan Xue, Yongkang Zou, Anfang Cui, Fude Fang, Yongsheng Chang

Erschienen in: Diabetologia | Ausgabe 10/2016

Einloggen, um Zugang zu erhalten

Abstract

Aim/hypothesis

Hepatic forkhead box q1 (FOXQ1) expression levels are regulated by nutritional and pathophysiological status. In this study we investigated the role of FOXQ1 in the regulation of hepatic gluconeogenesis.

Methods

We used multiple mouse and cell models to study the role of FOXQ1 in regulating expression of gluconeogenic genes, and cellular and hepatic glucose production.

Results

Expression of hepatic FOXQ1 was regulated by fasting in normal mice and was dysregulated in diabetic mice. Overexpression of FOXQ1 in primary hepatocytes inhibited expression of gluconeogenic genes and decreased cellular glucose output. Hepatic FOXQ1 rescue in db/db and high-fat diet-induced obese mice markedly decreased blood glucose level and improved glucose intolerance. In contrast, wild-type C57 mice with hepatic FOXQ1 deficiency displayed increased blood glucose levels and impaired glucose tolerance. Interestingly, studies into molecular mechanisms indicated that FOXQ1 interacts with FOXO1, thereby blocking FOXO1 activity on hepatic gluconeogenesis, preventing it from directly binding to insulin response elements mapped in the promoter region of gluconeogenic genes.

Conclusions/interpretation

FOXQ1 is a novel factor involved in regulating hepatic gluconeogenesis, and the decreased FOXQ1 expression in liver may contribute to the development of type 2 diabetes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMed Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMed
2.
Zurück zum Zitat Puigserver P, Rhee J, Donovan J et al (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555CrossRefPubMed Puigserver P, Rhee J, Donovan J et al (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555CrossRefPubMed
3.
Zurück zum Zitat Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138CrossRefPubMed Yoon JC, Puigserver P, Chen G et al (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138CrossRefPubMed
4.
Zurück zum Zitat Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909CrossRefPubMed Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909CrossRefPubMed
5.
Zurück zum Zitat Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868CrossRefPubMed Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868CrossRefPubMed
6.
Zurück zum Zitat Dentin R, Liu Y, Koo SH et al (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449:366–369CrossRefPubMed Dentin R, Liu Y, Koo SH et al (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449:366–369CrossRefPubMed
7.
Zurück zum Zitat Dong XC, Copps KD, Guo S et al (2008) Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8:65–76CrossRefPubMedPubMedCentral Dong XC, Copps KD, Guo S et al (2008) Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 8:65–76CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6:208–216CrossRefPubMed Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6:208–216CrossRefPubMed
9.
Zurück zum Zitat Nakae J, Biggs WH 3rd, Kitamura T et al (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32:245–253CrossRefPubMed Nakae J, Biggs WH 3rd, Kitamura T et al (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32:245–253CrossRefPubMed
10.
Zurück zum Zitat Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447:1012–1016CrossRefPubMed Li X, Monks B, Ge Q, Birnbaum MJ (2007) Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447:1012–1016CrossRefPubMed
11.
Zurück zum Zitat Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426CrossRefPubMed Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117:421–426CrossRefPubMed
12.
Zurück zum Zitat Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634CrossRefPubMed Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634CrossRefPubMed
13.
Zurück zum Zitat Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96:7421–7426CrossRefPubMedPubMedCentral Biggs WH 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC (1999) Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96:7421–7426CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O’Brien RM (2006) Correlation between FOXO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol 20:2831–2847CrossRefPubMed Onuma H, Vander Kooi BT, Boustead JN, Oeser JK, O’Brien RM (2006) Correlation between FOXO1a (FKHR) and FOXO3a (FKHRL1) binding and the inhibition of basal glucose-6-phosphatase catalytic subunit gene transcription by insulin. Mol Endocrinol 20:2831–2847CrossRefPubMed
15.
Zurück zum Zitat O’Brien RM, Noisin EL, Suwanichkul A et al (1995) Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol Cell Biol 15:1747–1758CrossRefPubMedPubMedCentral O’Brien RM, Noisin EL, Suwanichkul A et al (1995) Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol Cell Biol 15:1747–1758CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Frank S, Zoll B (1998) Mouse HNF-3/fork head homolog-1-like gene: structure, chromosomal location, and expression in adult and embryonic kidney. DNA Cell Biol 17:679–688CrossRefPubMed Frank S, Zoll B (1998) Mouse HNF-3/fork head homolog-1-like gene: structure, chromosomal location, and expression in adult and embryonic kidney. DNA Cell Biol 17:679–688CrossRefPubMed
17.
Zurück zum Zitat Hong HK, Noveroske JK, Headon DJ et al (2001) The winged helix/forkhead transcription factor Foxq1 regulates differentiation of hair in satin mice. Genesis 29:163–171CrossRefPubMed Hong HK, Noveroske JK, Headon DJ et al (2001) The winged helix/forkhead transcription factor Foxq1 regulates differentiation of hair in satin mice. Genesis 29:163–171CrossRefPubMed
18.
Zurück zum Zitat Hoggatt AM, Kriegel AM, Smith AF, Herring BP (2000) Hepatocyte nuclear factor-3 homologue 1 (HFH-1) represses transcription of smooth muscle-specific genes. J Biol Chem 275:31162–31170CrossRefPubMed Hoggatt AM, Kriegel AM, Smith AF, Herring BP (2000) Hepatocyte nuclear factor-3 homologue 1 (HFH-1) represses transcription of smooth muscle-specific genes. J Biol Chem 275:31162–31170CrossRefPubMed
19.
Zurück zum Zitat Verzi MP, Khan AH, Ito S, Shivdasani RA (2008) Transcription factor foxq1 controls mucin gene expression and granule content in mouse stomach surface mucous cells. Gastroenterology 135:591–600CrossRefPubMedPubMedCentral Verzi MP, Khan AH, Ito S, Shivdasani RA (2008) Transcription factor foxq1 controls mucin gene expression and granule content in mouse stomach surface mucous cells. Gastroenterology 135:591–600CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Kaneda H, Arao T, Tanaka K et al (2010) FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res 70:2053–2063CrossRefPubMed Kaneda H, Arao T, Tanaka K et al (2010) FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res 70:2053–2063CrossRefPubMed
21.
Zurück zum Zitat Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q (2011) FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res 71:3076–3086CrossRefPubMed Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q (2011) FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res 71:3076–3086CrossRefPubMed
22.
Zurück zum Zitat Zhang H, Meng F, Liu G et al (2011) Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res 71:1292–1301CrossRefPubMedPubMedCentral Zhang H, Meng F, Liu G et al (2011) Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res 71:1292–1301CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Feng J, Zhang X, Zhu H, Wang X, Ni S, Huang J (2012) FoxQ1 overexpression influences poor prognosis in non-small cell lung cancer, associates with the phenomenon of EMT. PLoS One 7:e39937CrossRefPubMedPubMedCentral Feng J, Zhang X, Zhu H, Wang X, Ni S, Huang J (2012) FoxQ1 overexpression influences poor prognosis in non-small cell lung cancer, associates with the phenomenon of EMT. PLoS One 7:e39937CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Luo J, Deng ZL, Luo X et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247CrossRefPubMed Luo J, Deng ZL, Luo X et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247CrossRefPubMed
25.
Zurück zum Zitat Zhang H, Chen Q, Yang M et al (2013) Mouse KLF11 regulates hepatic lipid metabolism. J Hepatol 58:763–770CrossRefPubMed Zhang H, Chen Q, Yang M et al (2013) Mouse KLF11 regulates hepatic lipid metabolism. J Hepatol 58:763–770CrossRefPubMed
26.
Zurück zum Zitat Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5:e11707CrossRefPubMedPubMedCentral Kong X, Wang R, Xue Y et al (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5:e11707CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Wang R, Kong X, Cui A et al (2010) Sterol-regulatory-element-binding protein 1c mediates the effect of insulin on the expression of Cidea in mouse hepatocytes. Biochem J 430:245–254CrossRefPubMed Wang R, Kong X, Cui A et al (2010) Sterol-regulatory-element-binding protein 1c mediates the effect of insulin on the expression of Cidea in mouse hepatocytes. Biochem J 430:245–254CrossRefPubMed
28.
Zurück zum Zitat Le Lay J, Kaestner KH (2010) The Fox genes in the liver: from organogenesis to functional integration. Physiol Rev 90:1–22CrossRefPubMed Le Lay J, Kaestner KH (2010) The Fox genes in the liver: from organogenesis to functional integration. Physiol Rev 90:1–22CrossRefPubMed
29.
Zurück zum Zitat Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106:563–573CrossRefPubMed Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106:563–573CrossRefPubMed
30.
Zurück zum Zitat Bieller A, Pasche B, Frank S et al (2001) Isolation and characterization of the human forkhead gene FOXQ1. DNA Cell Biol 20:555–561CrossRefPubMed Bieller A, Pasche B, Frank S et al (2001) Isolation and characterization of the human forkhead gene FOXQ1. DNA Cell Biol 20:555–561CrossRefPubMed
31.
Zurück zum Zitat Overdier DG, Porcella A, Costa RH (1994) The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol 14:2755–2766CrossRefPubMedPubMedCentral Overdier DG, Porcella A, Costa RH (1994) The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix. Mol Cell Biol 14:2755–2766CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223CrossRefPubMed Seoane J, Le HV, Shen L, Anderson SA, Massague J (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223CrossRefPubMed
33.
Zurück zum Zitat Tzivion G, Dobson M, Ramakrishnan G (2011) FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813:1938–1945CrossRefPubMed Tzivion G, Dobson M, Ramakrishnan G (2011) FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813:1938–1945CrossRefPubMed
34.
Zurück zum Zitat Cheng Z, White MF (2011) Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal 14:649–661CrossRefPubMedPubMedCentral Cheng Z, White MF (2011) Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal 14:649–661CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Herzig S, Long F, Jhala US et al (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183CrossRefPubMed Herzig S, Long F, Jhala US et al (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183CrossRefPubMed
36.
Zurück zum Zitat Quinn PG, Yeagley D (2005) Insulin regulation of PEPCK gene expression: a model for rapid and reversible modulation. Curr Drug Targets Immune Endocr Metabol Disord 5:423–437CrossRefPubMed Quinn PG, Yeagley D (2005) Insulin regulation of PEPCK gene expression: a model for rapid and reversible modulation. Curr Drug Targets Immune Endocr Metabol Disord 5:423–437CrossRefPubMed
37.
Zurück zum Zitat Phillips DI, Barker DJ, Fall CH et al (1998) Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab 83:757–760PubMed Phillips DI, Barker DJ, Fall CH et al (1998) Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab 83:757–760PubMed
38.
Zurück zum Zitat Reynolds RM, Walker BR, Syddall HE, Whorwood CB, Wood PJ, Phillips DI (2001) Elevated plasma cortisol in glucose-intolerant men: differences in responses to glucose and habituation to venepuncture. J Clin Endocrinol Metab 86:1149–1153CrossRefPubMed Reynolds RM, Walker BR, Syddall HE, Whorwood CB, Wood PJ, Phillips DI (2001) Elevated plasma cortisol in glucose-intolerant men: differences in responses to glucose and habituation to venepuncture. J Clin Endocrinol Metab 86:1149–1153CrossRefPubMed
39.
Zurück zum Zitat Lemke U, Krones-Herzig A, Berriel Diaz M et al (2008) The glucocorticoid receptor controls hepatic dyslipidemia through Hes1. Cell Metab 8:212–223CrossRefPubMed Lemke U, Krones-Herzig A, Berriel Diaz M et al (2008) The glucocorticoid receptor controls hepatic dyslipidemia through Hes1. Cell Metab 8:212–223CrossRefPubMed
40.
Zurück zum Zitat Matsumoto M, Han S, Kitamura T, Accili D (2006) Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 116:2464–2472PubMedPubMedCentral Matsumoto M, Han S, Kitamura T, Accili D (2006) Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 116:2464–2472PubMedPubMedCentral
41.
Zurück zum Zitat Qu S, Altomonte J, Perdomo G et al (2006) Aberrant forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology 147:5641–5652CrossRefPubMedPubMedCentral Qu S, Altomonte J, Perdomo G et al (2006) Aberrant forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology 147:5641–5652CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Haeusler RA, Hartil K, Vaitheesvaran B et al (2014) Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 5:5190CrossRefPubMedPubMedCentral Haeusler RA, Hartil K, Vaitheesvaran B et al (2014) Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 5:5190CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Zhang K, Li L, Qi Y et al (2012) Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 153:631–646CrossRefPubMed Zhang K, Li L, Qi Y et al (2012) Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology 153:631–646CrossRefPubMed
Metadaten
Titel
The hepatic FOXQ1 transcription factor regulates glucose metabolism in mice
verfasst von
Ying Cui
Aijun Qiao
Tao Jiao
Huabing Zhang
Yuan Xue
Yongkang Zou
Anfang Cui
Fude Fang
Yongsheng Chang
Publikationsdatum
15.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 10/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4043-z

Weitere Artikel der Ausgabe 10/2016

Diabetologia 10/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.