Skip to main content
Erschienen in: Diabetologia 6/2018

06.04.2018 | Article

Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose

verfasst von: Jordi Merino, Aaron Leong, Ching-Ti Liu, Bianca Porneala, Geoffrey A. Walford, Marcin von Grotthuss, Thomas J. Wang, Jason Flannick, Josée Dupuis, Daniel Levy, Robert E. Gerszten, Jose C. Florez, James B. Meigs

Erschienen in: Diabetologia | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Identifying the metabolite profile of individuals with normal fasting glucose (NFG [<5.55 mmol/l]) who progressed to type 2 diabetes may give novel insights into early type 2 diabetes disease interception and detection.

Methods

We conducted a population-based prospective study among 1150 Framingham Heart Study Offspring cohort participants, age 40–65 years, with NFG. Plasma metabolites were profiled by LC-MS/MS. Penalised regression models were used to select measured metabolites for type 2 diabetes incidence classification (training dataset) and to internally validate the discriminatory capability of selected metabolites beyond conventional type 2 diabetes risk factors (testing dataset).

Results

Over a follow-up period of 20 years, 95 individuals with NFG developed type 2 diabetes. Nineteen metabolites were selected repeatedly in the training dataset for type 2 diabetes incidence classification and were found to improve type 2 diabetes risk prediction beyond conventional type 2 diabetes risk factors (AUC was 0.81 for risk factors vs 0.90 for risk factors + metabolites, p = 1.1 × 10−4). Using pathway enrichment analysis, the nitrogen metabolism pathway, which includes three prioritised metabolites (glycine, taurine and phenylalanine), was significantly enriched for association with type 2 diabetes risk at the false discovery rate of 5% (p = 0.047). In adjusted Cox proportional hazard models, the type 2 diabetes risk per 1 SD increase in glycine, taurine and phenylalanine was 0.65 (95% CI 0.54, 0.78), 0.73 (95% CI 0.59, 0.9) and 1.35 (95% CI 1.11, 1.65), respectively. Mendelian randomisation demonstrated a similar relationship for type 2 diabetes risk per 1 SD genetically increased glycine (OR 0.89 [95% CI 0.8, 0.99]) and phenylalanine (OR 1.6 [95% CI 1.08, 2.4]).

Conclusions/interpretation

In individuals with NFG, information from a discrete set of 19 metabolites improved prediction of type 2 diabetes beyond conventional risk factors. In addition, the nitrogen metabolism pathway and its components emerged as a potential effector of earliest stages of type 2 diabetes pathophysiology.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387:1513–1530CrossRef NCD Risk Factor Collaboration (NCD-RisC) (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387:1513–1530CrossRef
2.
Zurück zum Zitat GBD (2015) Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602 GBD (2015) Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602
3.
Zurück zum Zitat Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed
4.
Zurück zum Zitat Diabetes Prevention Program Research Group (2015) Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol 3:866–875CrossRefPubMedCentral Diabetes Prevention Program Research Group (2015) Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol 3:866–875CrossRefPubMedCentral
5.
Zurück zum Zitat Wilson PWF, Meigs JB, Sullivan L et al (2007) Prediction of incident diabetes mellitus in middle-aged adults. Arch Intern Med 167:1068CrossRefPubMed Wilson PWF, Meigs JB, Sullivan L et al (2007) Prediction of incident diabetes mellitus in middle-aged adults. Arch Intern Med 167:1068CrossRefPubMed
6.
Zurück zum Zitat Tirosh A, Shai I, Tekes-Manova D et al (2005) Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med 353:1454–1462CrossRefPubMed Tirosh A, Shai I, Tekes-Manova D et al (2005) Normal fasting plasma glucose levels and type 2 diabetes in young men. N Engl J Med 353:1454–1462CrossRefPubMed
7.
Zurück zum Zitat de Vegt F, Dekker JM, Jager A et al (2001) Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study. JAMA 285:2109–2113CrossRefPubMed de Vegt F, Dekker JM, Jager A et al (2001) Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study. JAMA 285:2109–2113CrossRefPubMed
8.
Zurück zum Zitat Choi SH, Kim TH, Lim S et al (2011) Hemoglobin A1c as a diagnostic tool for diabetes screening and new-onset diabetes prediction: a 6-year community-based prospective study. Diabetes Care 34:944–949CrossRefPubMedPubMedCentral Choi SH, Kim TH, Lim S et al (2011) Hemoglobin A1c as a diagnostic tool for diabetes screening and new-onset diabetes prediction: a 6-year community-based prospective study. Diabetes Care 34:944–949CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Anjana RM, Shanthi Rani CS, Deepa M et al (2015) Incidence of diabetes and prediabetes and predictors of progression among Asian Indians: 10-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES). Diabetes Care 38:1441–1448CrossRefPubMed Anjana RM, Shanthi Rani CS, Deepa M et al (2015) Incidence of diabetes and prediabetes and predictors of progression among Asian Indians: 10-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES). Diabetes Care 38:1441–1448CrossRefPubMed
10.
Zurück zum Zitat Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326CrossRefPubMedPubMedCentral Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Rhee EP, Cheng S, Larson MG et al (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest 121:1402–1411CrossRefPubMedPubMedCentral Rhee EP, Cheng S, Larson MG et al (2011) Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest 121:1402–1411CrossRefPubMedPubMedCentral
13.
15.
Zurück zum Zitat Floegel A, Stefan N, Yu Z et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62:639–648CrossRefPubMedPubMedCentral Floegel A, Stefan N, Yu Z et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62:639–648CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37:2508–2514CrossRefPubMedPubMedCentral Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37:2508–2514CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Drogan D, Dunn WB, Lin W et al (2015) Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem 61:487–497CrossRefPubMed Drogan D, Dunn WB, Lin W et al (2015) Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem 61:487–497CrossRefPubMed
18.
Zurück zum Zitat Walford GA, Ma Y, Clish C et al (2016) Metabolite profiles of diabetes incidence and intervention response in the Diabetes Prevention Program. Diabetes 65:1424–1433CrossRefPubMedPubMedCentral Walford GA, Ma Y, Clish C et al (2016) Metabolite profiles of diabetes incidence and intervention response in the Diabetes Prevention Program. Diabetes 65:1424–1433CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kannel WB, Feinleib M, McNamara PM et al (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110:281–290CrossRefPubMed Kannel WB, Feinleib M, McNamara PM et al (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110:281–290CrossRefPubMed
20.
Zurück zum Zitat Shaham O, Wei R, Wang TJ et al (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214CrossRefPubMedPubMedCentral Shaham O, Wei R, Wang TJ et al (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefPubMed
22.
Zurück zum Zitat Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMed Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502PubMed
23.
Zurück zum Zitat Tibshirani R (1996) Regression shrinkage and selection via the Lasso on JSTOR. J R Stat Soc 58:267–288 Tibshirani R (1996) Regression shrinkage and selection via the Lasso on JSTOR. J R Stat Soc 58:267–288
24.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMed
25.
26.
Zurück zum Zitat Kettunen J, Demirkan A, Würtz P et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7:11122CrossRefPubMedPubMedCentral Kettunen J, Demirkan A, Würtz P et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7:11122CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665CrossRefPubMedPubMedCentral Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Sun L, Liang L, Gao X et al (2016) Early prediction of developing type 2 diabetes by plasma acylcarnitines: a population-based study. Diabetes Care 39:1563–1570CrossRefPubMed Sun L, Liang L, Gao X et al (2016) Early prediction of developing type 2 diabetes by plasma acylcarnitines: a population-based study. Diabetes Care 39:1563–1570CrossRefPubMed
32.
Zurück zum Zitat Peddinti G, Cobb J, Yengo L et al (2017) Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia 60:1740–1750CrossRefPubMedPubMedCentral Peddinti G, Cobb J, Yengo L et al (2017) Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia 60:1740–1750CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Kikuchi G (1973) The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1:169–187CrossRefPubMed Kikuchi G (1973) The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1:169–187CrossRefPubMed
34.
Zurück zum Zitat Guasch-Ferre M, Hruby A, Toledo E et al (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39:833–846CrossRefPubMedPubMedCentral Guasch-Ferre M, Hruby A, Toledo E et al (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39:833–846CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Xie W, Wood AR, Lyssenko V et al (2013) Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes 62:2141–2150CrossRefPubMedPubMedCentral Xie W, Wood AR, Lyssenko V et al (2013) Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes 62:2141–2150CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Mahendran Y, Jonsson A, Have CT et al (2017) Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia 60:873–878CrossRefPubMed Mahendran Y, Jonsson A, Have CT et al (2017) Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia 60:873–878CrossRefPubMed
Metadaten
Titel
Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose
verfasst von
Jordi Merino
Aaron Leong
Ching-Ti Liu
Bianca Porneala
Geoffrey A. Walford
Marcin von Grotthuss
Thomas J. Wang
Jason Flannick
Josée Dupuis
Daniel Levy
Robert E. Gerszten
Jose C. Florez
James B. Meigs
Publikationsdatum
06.04.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 6/2018
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-018-4599-x

Weitere Artikel der Ausgabe 6/2018

Diabetologia 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.