Skip to main content
Log in

Anatomische und biomechanische Überlegungen zur Sprunggelenkprothetik

Anatomical and biomechanical aspects of total ankle replacement

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Der Erfolg des prothetischen Ersatzes des oberen Sprunggelenks (OSG) dürfte wesentlich davon abhängen inwieweit die physiologischen Verhältnisse des Gelenks erhalten bleiben, respektive wiederhergestellt wurden. Je mehr das Design der Prothese der physiologischen Anatomie entspricht, je korrekter die Achsenstellung des Rückfußes und je ausgeglichener die Bandspannung ist, desto besser werden die normalen kinematischen Verhältnisse des OSG nachgeahmt. Dadurch können unphysiologische Kräfte vermindert werden, die zu Schmerzen, Verschleiß und zu einem frühen Implantatversagen führen können.

In diesem Artikel sind die zur Sprunggelenkprothetik notwendigen anatomischen und biomechanischen Grundlagen zusammengestellt.

Abstract

The success of total ankle replacement highly depends on how successfully the physiological kinematics are maintained or reconstructed. Normal kinematics of the ankle joint can be replicated by designing an implant that is as close as possible to the normal bony anatomy, aligning the ankle and balancing the ligaments. Mimicking normal kinematics and kinetics of a healthy ankle joint will consequently decrease damaging joint contact stress forces and stress forces on the surrounding soft tissue, which may cause wear, implant failure, and pain.

This article summarizes the anatomical and biomechanical basics that are required in total ankle replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adelaar RS (1990) Fractures of the talus. In: Greene WB (ed) Instructional course lectures XXXIX. American Academy of Orthopaedic Surgeouns, Park Ridge, IL, pp 147–156

  2. Anderson KJ, LeCocq JF, Clayton ML (1962) Athletic injury to the fibular collateral ligament of the ankle. Clin Orthop 23: 146

    PubMed  Google Scholar 

  3. Barnett CH, Napier JR (1952) The axis of rotation at the ankle joint in man. Its influence upon the form of the talus and mobility of the fibula. J Anatomy 86: 1–9

    Google Scholar 

  4. Baumhauer JF, Alosa DM, Renstroem PA, Trevino S, Beynnon B (1995) A prospective study of ankle injury risk factors. Am J Sports Med 23: 564–570

    PubMed  Google Scholar 

  5. Boss AP, Hintermann B (2002) Anatomical study of the medial ankle ligament complex. Foot Ankle Int 23: 547–553

    PubMed  Google Scholar 

  6. Colville MR, Marder RA, Boyle JJ, Zarins B (1990) Strain measurement in lateral ankle ligaments. Am J Sports Med 18: 196–200

    PubMed  Google Scholar 

  7. Harper MX (1987) Deltoid ligament: an anatomical evaluation of function. Foot Ankle 8: 19–22

    PubMed  Google Scholar 

  8. Hicks JH (1953) The mechanics of the foot, vol 1: The joints. J Anatomy 87: 345–357

    Google Scholar 

  9. Hintermann B (2005) Anatomic and biomechanical characteristics of the ankle joint and total ankle arthroplasty. In: Hintermann B (ed) Total ankle arthroplasty. Springer, Wien New York, pp 25–42

  10. Hintermann B, Nigg BM (1995) In vitro kinematics of the loaded ankle/foot complex in response to dorsi-/plantar flexion. Foot Ankle Int 16: 514–518

    PubMed  Google Scholar 

  11. Hintermann B, Nigg BM, Sommer C, Cole GK (1994) Transfer of movement between calcaneus and tibia in vitro. Clin Biomech 9: 349–355

    Article  Google Scholar 

  12. Hintermann B, Sommer C, Nigg BM (1995) The influence of ligament transection on tibial and calcaneal rotation with loading and dorsi-/plantar flexion. Foot Ankle Int 9: 567–571

    Google Scholar 

  13. Hvid I, Rasmussen O, Jensen NC, Nielsen S (1985) Trabecular bone strength profiles at the ankle joint. Clin Orthop 199: 306–312

    PubMed  Google Scholar 

  14. Inman VT (1991) The joints of the ankle. In: Inman VT (ed) The joints of the ankle, 2nd edn. Wiliams & Wilkins, Baltimore, pp 31–74

  15. Kapandji IA (1987) Das obere Sprunggelenk. In: Kapandji IA (Hrsg) Funtionelle Anatomie der Gelenke, Bd 47. Enke, Stuttgart, pp 150–163

  16. Knupp M, Ledermann HP, Magerkurth O, Hintermann B (2005) The surgical tibiotalar angle: A radiological study. Foot Ankle Int 26: 713–715

    PubMed  Google Scholar 

  17. Leardini A, O’Connor JJ, Catani F, Giannini S (1999) A geometric model of the human ankle joint. J Biomech 32: 585–591

    Article  PubMed  Google Scholar 

  18. Lindsjo U, Danckwardt-Lilliestrom G, Sahlstedt B (1985) Measurement of the motion range in the loaded ankle. Clin Orthop 199: 68–71

    PubMed  Google Scholar 

  19. Lowery RB (1995) Fractures of the talus and the os calcis. Opin Orthop 6: 25–34

    Google Scholar 

  20. Lundberg A, Goldie, I, Kalin B, Selvik G (1989) Kinematics of the ankle/foot complex, part 1: Plantar flexion and dorsiflexion. Foot Ankle 9: 194–200

    PubMed  Google Scholar 

  21. Lundberg A, Svennson OK, Nemeth G, Selvik G (1989) The axis of rotation of the ankle joint. J Bone Joint Surg Br 71: 94–99

    PubMed  Google Scholar 

  22. Mc Cullough CJ, Burge PD (1980) Rotatory stability of the load-bearing ankle. An experimental study. J Bone Joint Surg Br 62: 460–464

    PubMed  Google Scholar 

  23. Michelson JD, Schmidt GR, Mizel MS (2000) Kinematics of a total arthroplasty of the ankle: comparison to normal ankle motion. Foot Ankle Int 21: 278–284

    PubMed  Google Scholar 

  24. Milner CE, Soames RW (1998) The medial collateral ligaments of the human ankle joint: anatomical variations. Foot Ankle Int 19: 289–292

    PubMed  Google Scholar 

  25. Rassmussen O, Kroman-Andersen C, Boe S (1983) Deltoid ligament: functional analysis of the medial collateral ligamentous apparatus of the ankle joint. Acta Orthop Scand 54: 36–44

    PubMed  Google Scholar 

  26. Rasmussen O, Tovberg-Jensen I (1982) Mobility of the ankle joint: recording of rotatory movements in the talocrural joint in vitro with and without the lateral collateral ligaments of the ankle. Acta Orthop Scand 53: 155–160

    PubMed  Google Scholar 

  27. Renstrom P, Wertz M, Incavo S, Pope M, Ostgaard HC, Arms S, Haugh L (1988) Strain in the lateral ligaments of the ankle. Foot Ankle 9: 59–63

    PubMed  Google Scholar 

  28. Roaas A, Andersson GB (1982) Normal range of motion of the hip, knee and ankle joints in male subjects, 30–40 years of age. Acta Orthop Scand 53: 205–208

    PubMed  Google Scholar 

  29. Sammarco J (1977) Biomechanics of the ankle: Surface velocity and instant centre of rotation in the sagital plane. Am J Sports Med 5: 231–234

    PubMed  Google Scholar 

  30. Sarrafian SK (1994) Anatomy of foot and ankle, 2nd edn. Lippincott, Philadelphia, pp 239–240

  31. Siegler S, Chen J, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joint. J Biomech Eng 110: 364–373

    PubMed  Google Scholar 

  32. Sommer C, Hintermann B, Nigg BM, Bogert van den AJ (1996) Influence of ankle ligaments on tibial rotation: an in vitro study. Foot Ankle Int 17: 79–84

    PubMed  Google Scholar 

  33. Stauffer RN, Chao EY, Brewster RC (1977) Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin Orthop 127: 189–196

    PubMed  Google Scholar 

  34. Stormont DM, Morrey BF, An KN, Cass JR (1985) Stability of the loaded ankle. Am J Sports Med 13: 295–300

    PubMed  Google Scholar 

  35. Valderrabano V, Hintermann B, Dick W (2004) Scandinavian total ankle replacement: a 3.7-year average follow-up of 65 patients. Clin Orthop 424: 47–56

    PubMed  Google Scholar 

  36. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle, part 1: Range of motion. Foot Ankle Int 24: 881–887

    PubMed  Google Scholar 

  37. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle: part 2: Movement transfer. Foot Ankle Int 24: 888–896

    PubMed  Google Scholar 

  38. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle, part 3: Talar movement. Foot Ankle Int 24: 897–900

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hintermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knupp, M., Valderrabano, V. & Hintermann, B. Anatomische und biomechanische Überlegungen zur Sprunggelenkprothetik. Orthopäde 35, 489–494 (2006). https://doi.org/10.1007/s00132-006-0935-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-006-0935-9

Schlüsselwörter

Keywords

Navigation