Skip to main content
Log in

Fluids reverse the early lipopolysaccharide-induced albumin leakage in rodent mesenteric venules

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

Volume resuscitation is clinically beneficial in patients with sepsis, but few data exist concerning the effects of fluid administration on early events in the inflammatory process. Vascular permeability, leukocyte rolling and leukocyte adhesion in the rodent mesenteric microcirculation were assessed in vivo using intravital microscopy, and the effect of fluid administration on lipopolysaccharide (LPS)-induced changes recorded.

Design

Prospective, repeated measures study.

Setting

University hospital laboratory.

Subjects

Male Wistar rats in six groups.

Interventions

All animals underwent intravital microscopic examination of mesenteric post-capillary venules. LPS or vehicle was applied topically. Animals received either no additional fluids, 0.9% saline (16 ml/kg per h) or 5% human albumin (16 ml/kg per h) commencing 30 min prior to LPS/vehicle administration.

Measurements and main results

Leukocyte rolling, firm adhesion and blood velocity were observed directly. Vascular permeability was assessed using the flux of fluorescently labelled albumin into the interstitium. LPS significantly increased the median (IQR) number of leukocytes rolling and firmly adherent relative to baseline (at 60 min rolling increased from 12.0 (10.3–13.8) to 40.3 (36.0–47.5) cells/min; adhesion increased from 1 (1–2) to 17 (12–26) cells/100 μm; n=5, p<0.01). Transvascular albumin flux was significantly increased 45 min after LPS application (p<0.01), but not after vehicle. Administration of either 0.9% saline (n=5) or 5% human albumin (n=6), significantly attenuated LPS-induced increases in albumin flux (p<0.05), leukocyte rolling (p<0.01) and adhesion (p<0.01). Fluid administration did not appear to alter shear rates.

Conclusions

Pre-emptive volume administration with either saline or albumin prevented early LPS-induced microcirculatory changes by an undefined effect that is unrelated to changes in microvascular flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. New Engl J Med 345(19):1368–1377

    Article  CAS  PubMed  Google Scholar 

  2. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270(22):2699–2707

    Article  CAS  PubMed  Google Scholar 

  3. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318(7191):1099–1103

    CAS  PubMed  Google Scholar 

  4. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333(16):1025–1032

    Article  CAS  PubMed  Google Scholar 

  5. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330(24):1717–1722

    Article  CAS  PubMed  Google Scholar 

  6. Piper RD, Pitt-Hyde M, Li F, Sibbald WJ, Potter RF (1996) Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 154(4, Pt 1):931–937

  7. Nieuwenhuijzen GA, Knapen MF, Oyen WJ, Hendriks T, Corstens FH, Goris RJ (1997) Organ damage is preceded by changes in protein extravasation in an experimental model of multiple organ dysfunction syndrome. Shock 7(2):98–104

    CAS  PubMed  Google Scholar 

  8. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145(5):990–998

    CAS  PubMed  Google Scholar 

  9. Alsous F, Khamiees M, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA (2000) Negative fluid balance predicts survival in patients with septic shock: a retrospective pilot study. Chest 117(6):1749–1754

    Article  CAS  PubMed  Google Scholar 

  10. Vincent JL (2001) Hemodynamic support in septic shock (2001) Intensive Care Med 27(Suppl 1):S80–92

  11. Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ 317(7153):235–240

    PubMed  Google Scholar 

  12. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L (2001) Effects of hydroxyethyl starch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357(9260):911–916

    Article  CAS  PubMed  Google Scholar 

  13. Wilkes MM, Navickis RJ (2001) Patient survival after human albumin administration. A meta-analysis of randomized, controlled trials. Ann Intern Med 135(3):149–164

    CAS  PubMed  Google Scholar 

  14. Anning PB, Sair M, Winlove CP, Evans TW (1999) Abnormal tissue oxygenation and cardiovascular changes in endotoxemia. Am J Respir Crit Care Med 159(6):1710–1715

    CAS  PubMed  Google Scholar 

  15. Singh S, Anning PB, Winlove CP, Evans TW (2001) Regional transcapillary albumin exchange in rodent endotoxaemia: effects of fluid resuscitation and inhibition of nitric oxide synthase. Clin Sci (Lond) 100(1):81–89

    Google Scholar 

  16. Ley K (1994) Histamine can induce leukocyte rolling in rat mesenteric venules. Am J Physiol 267(3, Pt 2):H1017–1023

  17. Parker SJ, Watkins PE (2001) Experimental models of gram-negative sepsis. Br J Surg 88:22–30

    Article  CAS  PubMed  Google Scholar 

  18. Sanz MJ, Johnston B, Issekutz A, Kubes P (1999) Endothelin-1 causes P-selectin-dependent leukocyte rolling and adhesion within rat mesenteric microvessels. Am J Physiol 277:H1823–1830

    CAS  PubMed  Google Scholar 

  19. Kurose I, Miura S, Fukumura D, Tsuchiya M (1993) Mechanisms of endothelin-induced macromolecular leakage in microvascular beds of rat mesentery. Eur J Pharmacol 250:85–94

    Article  CAS  PubMed  Google Scholar 

  20. Brown H, Prescott R (1999) Repeated measures data. In: Applied mixed models in medicine. John Wiley, Chichester, pp 199–260

  21. Grega GJ, Adamski SW, Dobbins DE (1986) Physiological and pharmacological evidence for the regulation of permeability. Fed Proc 45:96–100

    CAS  PubMed  Google Scholar 

  22. Davenpeck KL, Steeber DA, Tedder TF, Bochner BS (1997) P- and L-selectin mediate distinct but overlapping functions in endotoxin-induced leukocyte-endothelial interactions in the rat mesenteric microcirculation. J Immunol 159:1977–1986

    CAS  PubMed  Google Scholar 

  23. Renkin EM, Rew K, Wong M, O’Loughlin D, Sibley L (1989) Influence of saline infusion on blood-tissue albumin transport. Am J Physiol 257:H525–533

    CAS  PubMed  Google Scholar 

  24. Hoffmann JN, Vollmar B, Laschke MW, Inthorn D, Schildberg FW, Menger MD (2002) Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology 97:460–470

    Article  CAS  PubMed  Google Scholar 

  25. Bannerman DD, Sathyamoorthy M, Goldblum SE (1998) Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem 273:35371–35380

    Article  CAS  PubMed  Google Scholar 

  26. Gautam N, Herwald H, Hedqvist P, Lindbom L (2000) Signaling via beta(2) integrins triggers neutrophil-dependent alteration in endothelial barrier function. J Exp Med 191:1829–1839

    Article  CAS  PubMed  Google Scholar 

  27. Arfors KE, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69:338–340

    CAS  PubMed  Google Scholar 

  28. Alam HB, Sun L, Ruff P, Austin B, Burris D, Rhee P (2000) E- and P-selectin expression depends on the resuscitation fluid used in hemorrhaged rats. J Surg Res 94:145–152

    Article  CAS  PubMed  Google Scholar 

  29. Rhee P, Wang D, Ruff P, Austin B, DeBraux S, Wolcott K, Burris D, Ling G, Sun L (2000) Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 28:74–78

    Article  CAS  PubMed  Google Scholar 

  30. Deng X, Wang X, Andersson R (1995) Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. J Appl Physiol 78:2052–2061

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the British Heart Foundation and a non-directional grant from the Plasma Protein Therapeutics Association (Europe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy W. Evans.

Additional information

Drs. Anning and Finney are supported by grants from the British Heart Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anning, P.B., Finney, S.J., Singh, S. et al. Fluids reverse the early lipopolysaccharide-induced albumin leakage in rodent mesenteric venules. Intensive Care Med 30, 1944–1949 (2004). https://doi.org/10.1007/s00134-004-2385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2385-3

Keywords

Navigation