Skip to main content
Erschienen in: Intensive Care Medicine 12/2009

01.12.2009 | Original

Dilutional acidosis: where do the protons come from?

verfasst von: Luciano Gattinoni, E. Carlesso, G. Maiocchi, F. Polli, P. Cadringher

Erschienen in: Intensive Care Medicine | Ausgabe 12/2009

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To investigate the mechanism of acidosis developing after saline infusion (dilutional acidosis or hyperchloremic acidosis).

Methods

We simulated normal extracellular fluid dilution by infusing distilled water, normal saline and lactated Ringer’s solution. Simulations were performed either in a closed system or in a system open to alveolar gases using software based on the standard laws of mass action and mass conservation. In vitro experiments diluting human plasma were performed to validate the model.

Results

In our computerized model with constant pKs, diluting extracellular fluid modeled as a closed system with distilled water, normal saline or lactated Ringer’s solution is not associated with any pH modification, since all its determinants (strong ion difference, CO2 content and weak acid concentration) decrease at the same degree, maintaining their relative proportions unchanged. Experimental data confirmed the simulation results for normal saline and lactated Ringer’s solution, whereas distilled water dilution caused pH to increase. This is due to the increase of carbonic pK induced by the dramatic decrease of ionic strength. Acidosis developed only when the system was open to gases due to the increased CO2 content, both in its dissociated (bicarbonate) and undissociated form (dissolved CO2).

Conclusions

The increase in proton concentration observed after dilution of the extracellular system derives from the reaction of CO2 hydration, which occurs only when the system is open to the gases. Both Stewart’s approach and the traditional approach may account for these results.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kellum JA (1999) Acid–base physiology in the post-Copernican era. Curr Opin Crit Care 5:429–435CrossRef Kellum JA (1999) Acid–base physiology in the post-Copernican era. Curr Opin Crit Care 5:429–435CrossRef
2.
Zurück zum Zitat Corey HE (2003) Stewart and beyond: new models of acid–base balance. Kidney Int 64:777–787CrossRefPubMed Corey HE (2003) Stewart and beyond: new models of acid–base balance. Kidney Int 64:777–787CrossRefPubMed
3.
Zurück zum Zitat Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid–base disturbance. Acta Anaesthesiol Scand Suppl 107:123–128CrossRefPubMed Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid–base disturbance. Acta Anaesthesiol Scand Suppl 107:123–128CrossRefPubMed
4.
Zurück zum Zitat Gattinoni L (2009) Foreword. In: Kellum JA, Elbers PWB (eds) Stewart’s textbook of acid–base, 2nd edn. Lulu.com, Amsterdam, pp 21–23 Gattinoni L (2009) Foreword. In: Kellum JA, Elbers PWB (eds) Stewart’s textbook of acid–base, 2nd edn. Lulu.com, Amsterdam, pp 21–23
5.
Zurück zum Zitat Henderson LJ (1908) The theory of neutrality regulation in the animal organism. Am J Physiol 21:427–448 Henderson LJ (1908) The theory of neutrality regulation in the animal organism. Am J Physiol 21:427–448
6.
Zurück zum Zitat Siggaard-Andersen O, Engel K (1960) A new acid–base nomogram, an improved method for calculation of the relevant blood acid–base data. Scand J Clin Lab Invest 12:177–186CrossRef Siggaard-Andersen O, Engel K (1960) A new acid–base nomogram, an improved method for calculation of the relevant blood acid–base data. Scand J Clin Lab Invest 12:177–186CrossRef
7.
Zurück zum Zitat Grogono AW, Byles PH, Hawke W (1976) An in-vivo representation of acid–base balance. Lancet 1:499–500CrossRefPubMed Grogono AW, Byles PH, Hawke W (1976) An in-vivo representation of acid–base balance. Lancet 1:499–500CrossRefPubMed
8.
Zurück zum Zitat Siggaard-Andersen O (1963) Blood acid–base alignment nomogram. Scales for pH, PCO2, base excess of whole blood of different hemoglobin concentrations. Plasma bicarbonate and plasma total CO2. Scand J Clin Lab Invest 15:211–217CrossRef Siggaard-Andersen O (1963) Blood acid–base alignment nomogram. Scales for pH, PCO2, base excess of whole blood of different hemoglobin concentrations. Plasma bicarbonate and plasma total CO2. Scand J Clin Lab Invest 15:211–217CrossRef
9.
Zurück zum Zitat Stewart PA (1981) How to understand acid–base. A quantitative acid–base primer for biology and medicine. Elsevier, New York Stewart PA (1981) How to understand acid–base. A quantitative acid–base primer for biology and medicine. Elsevier, New York
10.
Zurück zum Zitat Kellum JA, Elbers PWB (2009) Stewart’s textbook of acid–base. Lulu.com, Amsterdam Kellum JA, Elbers PWB (2009) Stewart’s textbook of acid–base. Lulu.com, Amsterdam
11.
Zurück zum Zitat Shires GT, Holman J (1948) Dilutional Acidosis. Ann Intern Med 28:557–559PubMed Shires GT, Holman J (1948) Dilutional Acidosis. Ann Intern Med 28:557–559PubMed
12.
Zurück zum Zitat Asano S, Kato E, Yamauchi M, Ozawa Y, Iwasa M (1966) The mechanism of acidosis caused by infusion of saline solution. Lancet 1:1245–1246CrossRefPubMed Asano S, Kato E, Yamauchi M, Ozawa Y, Iwasa M (1966) The mechanism of acidosis caused by infusion of saline solution. Lancet 1:1245–1246CrossRefPubMed
13.
Zurück zum Zitat Garella S, Chang BS, Kahn SI (1975) Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 8:279–283CrossRefPubMed Garella S, Chang BS, Kahn SI (1975) Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 8:279–283CrossRefPubMed
14.
Zurück zum Zitat Kellum JA (2002) Saline-induced hyperchloremic metabolic acidosis. Crit Care Med 30:259–261CrossRefPubMed Kellum JA (2002) Saline-induced hyperchloremic metabolic acidosis. Crit Care Med 30:259–261CrossRefPubMed
15.
Zurück zum Zitat Constable PD (2003) Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg 96:919–922CrossRefPubMed Constable PD (2003) Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg 96:919–922CrossRefPubMed
16.
Zurück zum Zitat Hastings AB, Sendroy J Jr (1925) The effect of variation in ionic strength on the apparent first and second dissociation constants of carbonic acid. J Biol Chem 65:445–455 Hastings AB, Sendroy J Jr (1925) The effect of variation in ionic strength on the apparent first and second dissociation constants of carbonic acid. J Biol Chem 65:445–455
17.
Zurück zum Zitat Gattinoni L, Lissoni A (1998) Pathophysiology and diagnosis of respiratory acid–base disturbances in patients with critical illness. In: Bellomo R, Ronco C (eds) Critical care nephrology. Kluwer Academic Publishers, Dordrecht, pp 297–311 Gattinoni L, Lissoni A (1998) Pathophysiology and diagnosis of respiratory acid–base disturbances in patients with critical illness. In: Bellomo R, Ronco C (eds) Critical care nephrology. Kluwer Academic Publishers, Dordrecht, pp 297–311
18.
Zurück zum Zitat (1997) Appendix C: fluids and electrolytes. In: Civetta JM, Taylor RW, Kirby RR (eds) 2257, 3rd edn. Lippincott–Raven, Philadelphia/New York, p 2257 (1997) Appendix C: fluids and electrolytes. In: Civetta JM, Taylor RW, Kirby RR (eds) 2257, 3rd edn. Lippincott–Raven, Philadelphia/New York, p 2257
19.
Zurück zum Zitat Ring T, Frische S, Nielsen S (2005) Clinical review: renal tubular acidosis–a physicochemical approach. Crit Care 9:573–580CrossRefPubMed Ring T, Frische S, Nielsen S (2005) Clinical review: renal tubular acidosis–a physicochemical approach. Crit Care 9:573–580CrossRefPubMed
20.
21.
Zurück zum Zitat Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270CrossRefPubMed Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270CrossRefPubMed
22.
Zurück zum Zitat Takil A, Eti Z, Irmak P, Yilmaz GF (2002) Early postoperative respiratory acidosis after large intravascular volume infusion of lactated ringer’s solution during major spine surgery. Anesth.Analg 95:294–298CrossRefPubMed Takil A, Eti Z, Irmak P, Yilmaz GF (2002) Early postoperative respiratory acidosis after large intravascular volume infusion of lactated ringer’s solution during major spine surgery. Anesth.Analg 95:294–298CrossRefPubMed
23.
Zurück zum Zitat Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG (2001) The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid–base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93:811–816CrossRefPubMed Wilkes NJ, Woolf R, Mutch M, Mallett SV, Peachey T, Stephens R, Mythen MG (2001) The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid–base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 93:811–816CrossRefPubMed
24.
Zurück zum Zitat Gattinoni L, Carlesso E, Cadringher P, Caironi P (2006) Strong ion difference in urine: new perspectives in acid–base assessment. Crit Care 10:137CrossRefPubMed Gattinoni L, Carlesso E, Cadringher P, Caironi P (2006) Strong ion difference in urine: new perspectives in acid–base assessment. Crit Care 10:137CrossRefPubMed
Metadaten
Titel
Dilutional acidosis: where do the protons come from?
verfasst von
Luciano Gattinoni
E. Carlesso
G. Maiocchi
F. Polli
P. Cadringher
Publikationsdatum
01.12.2009
Verlag
Springer-Verlag
Erschienen in
Intensive Care Medicine / Ausgabe 12/2009
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-009-1653-7

Weitere Artikel der Ausgabe 12/2009

Intensive Care Medicine 12/2009 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.