Skip to main content
Erschienen in: Intensive Care Medicine 1/2010

01.01.2010 | Physiological and Technical Notes

A novel adaptive control system for noisy pressure-controlled ventilation: a numerical simulation and bench test study

verfasst von: Alessandro Beda, Peter M. Spieth, Thomas Handzsuj, Paolo Pelosi, Nadja C. Carvalho, Edmund Koch, Thea Koch, Marcelo Gama de Abreu

Erschienen in: Intensive Care Medicine | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

Purpose

There is growing interest in the use of both variable and pressure-controlled ventilation (PCV). The combination of these approaches as “noisy PCV” requires adaptation of the mechanical ventilator to the respiratory system mechanics. Thus, we developed and evaluated a new control system based on the least-mean-squares adaptive approach, which automatically and continuously adjusts the driving pressure during PCV to achieve the desired variability pattern of tidal volume (V T).

Methods

The controller was tested during numerical simulations and with a physical model reproducing the mechanical properties of the respiratory system. We applied step changes in respiratory system mechanics and mechanical ventilation settings. The time needed to converge to the desired V T variability pattern after each change (t c) and the difference in minute ventilation between the measured and target pattern of V T (ΔMV) were determined.

Results

During numerical simulations, the control system for noisy PCV achieved the desired variable V T pattern in less than 30 respiratory cycles, with limited influence of the dynamic elastance (E*) on t c, except when E* was underestimated by >25%. We also found that, during tests in the physical model, the control system converged in <60 respiratory cycles and was not influenced by airways resistance. In all measurements, the absolute value of ΔMV was <25%.

Conclusion

The new control system for noisy PCV can prove useful for controlled mechanical ventilation in the intensive care unit.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gama de Abreu M, Spieth PM, Pelosi P, Carvalho AR, Walter C, Schreiber-Ferstl A, Aikele P, Neykova B, Hubler M, Koch T (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36:818–827CrossRefPubMed Gama de Abreu M, Spieth PM, Pelosi P, Carvalho AR, Walter C, Schreiber-Ferstl A, Aikele P, Neykova B, Hubler M, Koch T (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36:818–827CrossRefPubMed
2.
Zurück zum Zitat Spieth P, Carvalho AR, Güldner A, Pelosi P, Kirichuck O, Koch T, Gama de Abreu M (2009) Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology 110:342–350PubMed Spieth P, Carvalho AR, Güldner A, Pelosi P, Kirichuck O, Koch T, Gama de Abreu M (2009) Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology 110:342–350PubMed
3.
Zurück zum Zitat Spieth PM, Carvalho AR, Pelosi P, Hoehn C, Meissner C, Kasper M, Hubler M, von Neindorff M, Dassow C, Barrenschee M, Uhlig S, Koch T, Gama de Abreu M (2009) Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 179:684–693CrossRefPubMed Spieth PM, Carvalho AR, Pelosi P, Hoehn C, Meissner C, Kasper M, Hubler M, von Neindorff M, Dassow C, Barrenschee M, Uhlig S, Koch T, Gama de Abreu M (2009) Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med 179:684–693CrossRefPubMed
4.
Zurück zum Zitat Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA (1996) Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med 154:1567–1572PubMed Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA (1996) Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med 154:1567–1572PubMed
5.
Zurück zum Zitat Tugrul M, Camci E, Karadeniz H, Senturk M, Pembeci K, Akpir K (1997) Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth 79:306–310PubMed Tugrul M, Camci E, Karadeniz H, Senturk M, Pembeci K, Akpir K (1997) Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth 79:306–310PubMed
6.
Zurück zum Zitat Prella M, Feihl F, Domenighetti G (2002) Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS. Chest 122:1382–1388CrossRefPubMed Prella M, Feihl F, Domenighetti G (2002) Effects of short-term pressure-controlled ventilation on gas exchange, airway pressures, and gas distribution in patients with acute lung injury/ARDS. Chest 122:1382–1388CrossRefPubMed
7.
Zurück zum Zitat Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMed Putensen C, Zech S, Wrigge H, Zinserling J, Stuber F, von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49PubMed
8.
Zurück zum Zitat Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs Widrow B, Stearns SD (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs
9.
Zurück zum Zitat Khoo MC (1999) Physiological control systems: analysis simulation and estimation. Wiley-IEEE Press, New York Khoo MC (1999) Physiological control systems: analysis simulation and estimation. Wiley-IEEE Press, New York
10.
Zurück zum Zitat Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA (1988) Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol 65:309–317PubMed Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA (1988) Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol 65:309–317PubMed
11.
Zurück zum Zitat Boker A, Graham MR, Walley KR, McManus BM, Girling LG, Walker E, Lefevre GR, Mutch WA (2002) Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med 165:456–462PubMed Boker A, Graham MR, Walley KR, McManus BM, Girling LG, Walker E, Lefevre GR, Mutch WA (2002) Improved arterial oxygenation with biologically variable or fractal ventilation using low tidal volumes in a porcine model of acute respiratory distress syndrome. Am J Respir Crit Care Med 165:456–462PubMed
12.
Zurück zum Zitat Dojat M, Brochard L, Lemaire F, Harf A (1992) A knowledge-based system for assisted ventilation of patients in intensive care units. Int J Clin Monit Comput 9:239–250CrossRefPubMed Dojat M, Brochard L, Lemaire F, Harf A (1992) A knowledge-based system for assisted ventilation of patients in intensive care units. Int J Clin Monit Comput 9:239–250CrossRefPubMed
13.
Zurück zum Zitat Jandre FC, Pino AV, Lacorte I, Neves JH, Giannella-Neto A (2004) A closed-loop mechanical ventilation controller with explicit objective functions. IEEE Trans Biomed Eng 51:823–831CrossRefPubMed Jandre FC, Pino AV, Lacorte I, Neves JH, Giannella-Neto A (2004) A closed-loop mechanical ventilation controller with explicit objective functions. IEEE Trans Biomed Eng 51:823–831CrossRefPubMed
14.
Zurück zum Zitat Laubscher TP, Heinrichs W, Weiler N, Hartmann G, Brunner JX (1994) An adaptive lung ventilation controller. IEEE Trans Biomed Eng 41:51–59CrossRefPubMed Laubscher TP, Heinrichs W, Weiler N, Hartmann G, Brunner JX (1994) An adaptive lung ventilation controller. IEEE Trans Biomed Eng 41:51–59CrossRefPubMed
15.
Zurück zum Zitat Mersmann S, Dojat M (2004) SmartCare––automated clinical guidelines in critical care. In: Proceedings of 16th Eur Conf on artificial intelligence, pp 745–749 Mersmann S, Dojat M (2004) SmartCare––automated clinical guidelines in critical care. In: Proceedings of 16th Eur Conf on artificial intelligence, pp 745–749
16.
Zurück zum Zitat Romero PV, Rodriguez B, Lopez-Aguilar J, Manresa F (1998) Parallel airways inhomogeneity and lung tissue mechanics in transition to constricted state in rabbits. J Appl Physiol 84:1040–1047PubMed Romero PV, Rodriguez B, Lopez-Aguilar J, Manresa F (1998) Parallel airways inhomogeneity and lung tissue mechanics in transition to constricted state in rabbits. J Appl Physiol 84:1040–1047PubMed
17.
Zurück zum Zitat Feuer A, Weinstein E (1985) Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Trans Acoust Speech 33:222–230CrossRef Feuer A, Weinstein E (1985) Convergence analysis of LMS filters with uncorrelated Gaussian data. IEEE Trans Acoust Speech 33:222–230CrossRef
Metadaten
Titel
A novel adaptive control system for noisy pressure-controlled ventilation: a numerical simulation and bench test study
verfasst von
Alessandro Beda
Peter M. Spieth
Thomas Handzsuj
Paolo Pelosi
Nadja C. Carvalho
Edmund Koch
Thea Koch
Marcelo Gama de Abreu
Publikationsdatum
01.01.2010
Verlag
Springer-Verlag
Erschienen in
Intensive Care Medicine / Ausgabe 1/2010
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-009-1665-3

Weitere Artikel der Ausgabe 1/2010

Intensive Care Medicine 1/2010 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.