Skip to main content
Erschienen in: Intensive Care Medicine 12/2017

Open Access 22.09.2017 | Conference Reports and Expert Panel

Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC)

verfasst von: Martin C. J. Kneyber, Daniele de Luca, Edoardo Calderini, Pierre-Henri Jarreau, Etienne Javouhey, Jesus Lopez-Herce, Jürg Hammer, Duncan Macrae, Dick G. Markhorst, Alberto Medina, Marti Pons-Odena, Fabrizio Racca, Gerhard Wolf, Paolo Biban, Joe Brierley, Peter C. Rimensberger, on behalf of the section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care

Erschienen in: Intensive Care Medicine | Ausgabe 12/2017

Abstract

Purpose

Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children.

Methods

The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms.

Results

The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with “strong agreement”. The final iteration of the recommendations had none with equipoise or disagreement.

Conclusions

These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00134-017-4920-z) contains supplementary material, which is available to authorized users.
Take-home message: Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. The PEMVECC guidelines should help to harmonise the approach to paediatric mechanical ventilation and thereby propose a standard-of-care applicable in daily clinical practice and clinical research.

Introduction

Huge variability in size, lung maturity and the range of acute and chronic diagnoses have contributed to a lack of clinical evidence supporting the daily practice of paediatric mechanical ventilation (MV) (Fig. 1) [1, 2]. This prompted the Respiratory Failure Section of the European Society for Paediatric and Neonatal Intensive Care (ESPNIC) to convene the paediatric mechanical ventilation consensus conference (PEMVECC), aiming to harmonise the approach to paediatric MV and define a standard-of-care applicable in clinical practice and future collaborative clinical research. Specific aims were to provide recommendations regarding ventilation modalities, monitoring, targets of oxygenation and ventilation, supportive measures, and weaning and extubation readiness for patients with normal lungs, obstructive airway diseases, restrictive diseases, mixed diseases and chronically ventilated patients, cardiac patients and lung hypoplasia syndromes, and to provide directions for further research. From 138 recommendations drafted, 34 (32.7%) did not reach “strong agreement” and were redrafted (i.e. rewriting or rephrasing sometimes into two different recommendations), resulting in 52 recommendations for the second voting round. Of these, 142 (93.4%) reached “strong agreement”.

Methods

The steering committee (M.K. (chair), D.d.L., J.B., P.B. and P.R.) defined disease conditions (see ESM) and identified ten European panel members who were internationally established paediatric MV investigators with recent peer-reviewed publications (last 10 years). An electronic literature search in PubMed and EMBASE (inception to September 1, 2015) was performed using a combination of medical subject heading terms, text words related to MV and disease-specific terms. All panel members screened the references for eligibility, defined by (1) age <18 years, (2) describing non-invasive or invasive respiratory support, and (3) type of design (i.e. any type of clinical study except for case-series and reports). Publications were excluded if they described diseases exclusively linked to the perinatal period. The proposal by Chatburn (ESM, Table 2) was used for ventilator taxonomy [3, 4].
Recommendations were drafted by all panel members, and subsequently discussed at a two-day meeting in Rome, Italy (September 2015). This resulted in a final set of recommendations, subjected to electronic voting (December 2015) using the Research and Development/University of California, Los Angeles (RAND/UCLA) appropriateness method scale [5]. Recommendations were scored from 1 (complete disagreement) to 9 (complete agreement). Median score (95% confidence interval) was calculated after eliminating one lowest and highest value. Recommendations were labelled “strong agreement” (median 7–9 and no score <7), “equipoise” (median 4–6) or “disagreement” (median 1–3). Recommendations without “strong agreement” were rephrased. Revised recommendations retaining “strong agreement” after the second electronic voting (February 2016) were labelled “weak agreement” and the percentage of agreement (number of individual scores ≥7 divided by 15) quantified the level of disagreement. As it was expected a priori that there would be very few RCTs or systematic reviews, it was decided by the steering committee to keep the consensus guideline descriptive and not use the GRADE system [6].

Non-invasive support

High-flow nasal cannula (HFNC) and continuous positive airway pressure (CPAP)

There is insufficient data to recommend on the use of HFNC in obstructive airway (strong agreement), restrictive (strong agreement) or mixed disease (strong agreement) or on the use CPAP in obstructive airway (strong agreement) or restrictive disease (93% agreement). CPAP may be considered if there are no contra-indications (strong agreement) as initial support in mixed disease (strong agreement) and mild-to-moderate cardiorespiratory failure (strong agreement). There is insufficient data to recommend on the optimal interface for CPAP (strong agreement).
Although HFNC or CPAP may reduce the work of breathing, there are no outcome data showing superiority of HFNC or CPAP over any other intervention [728].

Non-invasive ventilation (NIV)

NIV can be considered before resorting to intubation in obstructive airway (strong agreement), restrictive disease (93% agreement), mild-to-moderate PARDS (strong agreement) or cardiorespiratory failure (strong agreement). NIV should not delay endotracheal intubation, but no specific limits can be provided in any disease condition (strong agreement). There are no data to recommend on any method or timing of NIV (strong agreement). There are insufficient data to provide recommendations on the optimal interface for NIV. Any interface with the least leakage needs to be used (strong agreement). Dependent on local experiences and materials, full face mask, oral-nasal mask or helmet for NIV should be used (93% agreement).
Non-invasive ventilation (NIV) is increasingly being used in ARF [2932], after cardiac surgery for congenital heart disease [3336], status asthmaticus [37, 38], or neuromuscular patients with ARF [3941]. Few uncontrolled studies suggested improved extubation success with NIV [42, 43]. Two RCTs comparing NIV versus oxygen supplementation on intubation prevention produced opposing results [43, 44]. In adult studies, NIV increased adverse outcomes in severe ARDS [4552]. To avoid delayed intubation, success of NIV should be assessed already 1 h after initiation by observing heart and respiratory rate, SpO2/FiO2 ratio, pH, level of consciousness and presence of organ failure [44, 50, 53].

Ventilator modes

We cannot make recommendations on any mode of mechanical ventilation for children with normal lungs (strong agreement), obstructive airway (strong agreement), restrictive (strong agreement), mixed disease (strong agreement), chronically ventilated children (strong agreement), cardiac children (strong agreement) or children with lung hypoplasia (strong agreement). With restored respiratory drive, pressure support ventilation may be considered. If used, the sensitivity of the flow cycling and rise time should be set to obtain an appropriate inspiratory time (strong agreement). There are no outcome data to recommend on closed-loop ventilation (strong agreement).
There are no outcome data to recommend on any ventilatory or respiratory assist modes for children with or without lung pathology, cardiac children, or chronically ventilated children requiring escalation of support for acute exacerbations [2, 5459]. Ventilator mode should be dictated by clinical experience and theoretical arguments, considering the pathophysiology of the disease [60, 61].
There are insufficient data to recommend on high-frequency oscillatory ventilation (HFOV) in obstructive airway (strong agreement), restrictive (strong agreement), mixed disease (strong agreement), cardiac children (strong agreement), chronically ventilated children or children with a congenital disorder who suffer from an acute exacerbation (93% agreement). HFOV may be considered if conventional ventilation fails (strong agreement), using an open lung strategy to maintain optimal lung volume. Careful use of HFOV can be considered in cardiac children who developed severe respiratory failure. Particular caution is advised in children with passive pulmonary blood flow or right ventricular dysfunction (strong agreement).
A mortality benefit of HFOV in acute hypoxaemic respiratory failure (AHRF) has not been shown [62]. Recent retrospective cohort analyses seemed to confirm adult observations of even an increased mortality with HFOV, although major methodological issues have been raised regarding these studies [6371]. HFOV can judiciously be performed in obstructive airway disease and cardiac children, including those with a Fontan circulation [7278].
There are insufficient data to recommend on high-frequency jet or high-frequency percussive ventilation (strong agreement) or airway pressure release ventilation (strong agreement). HFJV should not be used in obstructive airway disease because of the risk of dynamic hyperinflation (strong agreement).
There are no outcome data supporting high—frequency jet (HFJV) or high—frequency percussive ventilation (HFPV) for any disease condition outside the operating theatre when managing children with airway disorders [7985].
We recommend considering extra-corporeal devices (ECMO or other devices) where available in reversible diseases if conventional and/or HFOV fails. If no ECMO is available, early consultation of an ECMO centre is recommended because transporting patients who need ECMO can be hazardous (strong agreement).
All aspects of ECMO in paediatric ARF are discussed in a Statement paper [86].

Setting the ventilator

Triggering

We recommend targeted patient ventilator synchrony in any triggered (non-invasive) positive pressure ventilation (strong agreement).
The effects of patient-ventilator asynchrony or interventions such as flow cycling on outcome are unclear [8789]. However, better patient ventilator synchrony has been shown to improve patient comfort [8992].

Setting the I:E ratio/inspiratory time

We recommend setting the inspiratory time and respiratory rate related to respiratory system mechanics and disease trajectory. Both are closely correlated and cannot be judged as independent from each other (strong agreement). In restrictive lung disease, we recommend a higher respiratory rate to compensate for low tidal volume and maintain minute ventilation (strong agreement).
There are no outcome data to guide the choice of inspiratory time or I:E ratio. However, the time constant (i.e. compliance times resistance) of the respiratory system (π) is an important parameter in this context. At the bedside, we suggest to avoid flow end-inspiratory or expiratory flow interruption, the latter to avoid air-trapping.

Maintaining spontaneous breathing

We recommend that all children on respiratory support preferably should breathe spontaneously, with the exception of the most severely ill child with obstructive airway (strong agreement), restrictive (strong agreement) or mixed disease (strong agreement) requiring very high ventilator settings and intermittent neuromuscular blockade (strong agreement). In these children, controlled mechanical ventilation (pressure or volume) should be preferred, mandating the need for continuous sedation and/or muscle relaxants (strong agreement). Caution is advised when using sedation and relaxation in the presence of cardiac dysfunction (strong agreement).
Although there are no data to recommend on maintaining spontaneous breathing, adult data suggest that maintaining spontaneous breathing during MV allows for a more homogeneous lung aeration and reduced risk of muscular atrophy and diaphragmatic dysfunction [9397]. In adults, 48-h use of neuromuscular blocking agents (NMBA) in early severe ARDS significantly reduced 90-day crude mortality [98]. The only paediatric uncontrolled study on NMBA showed improved oxygenation [99]. No outcome data are available.

Setting the pressures

In the absence of transpulmonary pressure measurements, we recommend limiting the plateau pressure (Plat) ≤28 cmH2O (87% agreement) or ≤29–32 cmH2O if the chest wall elastance is increased in restrictive lung disease (93% agreement), mixed disease (strong agreement) and children with congenital/chronic disorders (strong agreement). We recommend limiting Pplat ≤30 cmH2O in obstructive airway disease (strong agreement).
Observational studies in (severe) lung injury identified a direct relationship between peak inspiratory pressure (PIP) and mortality [100103]. Measuring transpulmonary pressure (Ptp) instead of airway pressure (Paw) better defines lung strain in (severe) lung injury, especially in the presence of increased chest wall elastance [104, 105]. However, there are no studies identifying upper limits for PIP, Pplat or Ptp. For severe disease, we recommend adhering to the Pediatric Acute Lung Injury Consensus Conference (PALICC) recommendations [106].
We recommend delta pressure (i.e. the difference between end inspiratory and end expiratory pressure) <10 cmH2O if there is no lung pathology (strong agreement). There are no data to recommend any acceptable delta pressure in restrictive (strong agreement), obstructive airway (strong agreement) or mixed disease (strong agreement). For children with reduced lung volumes, the driving pressure at zero-flow (Vt/Crs) may dictate the optimal tidal volume (Vt) (strong agreement).
Driving pressure (ΔP = Vt/Crs) best stratified the risk for mortality in adults with ARDS [107]. These observations have not been replicated in children except for one study reporting an independent association between the airway pressure gradient (difference between PIP and PEEP) and mortality measured under dynamic flow conditions [103].

Setting tidal volume

There are no data to recommend optimal Vt in restrictive (strong agreement), obstructive airway (strong agreement), mixed disease (strong agreement), in cardiac children (strong agreement), children with congenital disorders or chronic ventilation (strong agreement. We recommend targeting physiologic Vt (strong agreement) and to avoid Vt > 10 mL/kg ideal bodyweight (strong agreement). In children with lung hypoplasia syndromes, optimal Vt may be smaller than physiologic because of the lower lung volumes (strong agreement).
So far, not a single value of Vt has been associated with mortality in children, irrespective of disease severity (i.e. ALI/ARDS vs. non-ALI/ARDS) [108, 109]. Interestingly, some observational studies reported better outcomes for children who were ventilated with Vt  > 5–8 ml/kg and only one identified lower mortality associated with Vt ~8 mL/kg actual bodyweight compared with ~10 mL/kg [100, 101, 110112].

Setting PEEP

We recommend PEEP to prevent alveolar collapse. However, we cannot recommend how much PEEP should be used. Physiological data in children without lung injury suggests 3–5 cmH2O (strong agreement). In severe disease, high PEEP may be needed (strong agreement). PEEP should always be set finding the optimal balance between haemodynamics and oxygenation. In order to improve oxygenation, PEEP titration should be attempted. There is no defined method to set best PEEP (strong agreement).
Moderate PEEP is sufficient when there is no lung pathology, but higher PEEP to restore EELV and improve respiratory system compliance (Crs) may be necessary in more severe disease and does not impair haemodynamics [1, 113121]. There are no data comparing low versus high PEEP in (severe) lung injury. Also, it is unclear how to set PEEP and whether markers such as PaO2 or quasi-static Crs predict best PEEP [122].
In obstructive airway or mixed disease, there are no data to recommend the level of PEEP in sedated and/or paralysed children who have sufficient expiratory times. However, assessment of intrinsic PEEP and Pplat may guide setting external PEEP in children with air trapping who are mechanically ventilated and sedated (strong agreement). A balance needs to be found between alveolar recruitment and alveolar overdistension (strong agreement).
There are no data supporting external PEEP to attenuate gas-trapping by splinting the airways open or guiding the allowable amount of external PEEP to facilitate spontaneous breathing [123126].
We recommend using high PEEP to stabilise airways in ventilated children with trachea- and/or bronchomalacia. Careful titration of PEEP is mandated to avoid cardiovascular compromise (strong agreement).
Observational data suggested reduced respiratory efforts with PEEP or CPAP in children with upper airway collapse. If used, it should be lowly titrated to avoid hemodynamic compromise [127, 128].

Lung recruitment

There are insufficient data to recommend any lung recruitment manoeuvre in children with (strong agreement) or without (strong agreement) lung injury or in cardiac children (strong agreement).
Recruitment manoeuvres (RM) may resolve atelectasis and improve gas exchange, but there are no data showing improved outcome [129136]. There are no outcome data to recommend on the best RM (i.e. sustained inflation or PEEP titration) [115, 137139]. There is no indication for routine RMs after endotracheal suctioning [140].

Monitoring

Recommendations and long text on monitoring can be found in the ESM.

Targets for oxygenation and ventilation

Oxygenation

We cannot recommend a specific lower or upper limit for SpO2 for any ventilated non-cardiac child with obstructive airway, restrictive or mixed disease (strong agreement). SpO2 >95% at room air should be expected in children without lung injury and extra-pulmonary manifestations (strong agreement). We recommend adhering to the PALICC guidelines for PARDS (i.e. SpO2 92–97% when PEEP <10 cmH2O and 88–92% when PEEP ≥10 ) (strong agreement). We cannot recommend a specific upper or lower limit for SpO2 for cardiac children. In children with cardiorespiratory failure, oxygen therapy should be titrated, balancing pulmonary disease against the underlying cardiac disorder, as well as in some conditions (e.g., single ventricle physiology) balancing pulmonary versus systemic blood flow (strong agreement). Increasing FiO2 up to 1.0 in life-threatening acute pulmonary hypertension crisis may be required (strong agreement).
There are no studies identifying the optimal SpO2 range in the presence or absence of lung injury. In healthy children breathing room air, SpO2 >95% and PaO2 between 80 and 100 mmHg should be expected [141, 142]. In cardiac children, children with or at risk for lung injury or children with pulmonary hypertension, target SpO2 depends on the type and severity of laesions [143, 144]. PALICC proposed SpO2 between 92 and 97% when PEEP <10 cmH2O and 88–92% for PEEP ≥10 cmH2O in non-cardiac PARDS [106]. There are no data reporting the safety and necessity of liberal or restrictive oxygen therapy, but as a rule of thumb the lowest FiO2 should be targeted [145147].

Ventilation

We recommend achieving normal CO2 levels in children with normal lungs (strong agreement). For acute (non-)pulmonary children, higher levels of CO2 may be accepted unless specific disease conditions dictate otherwise. However, we cannot recommend any specific pH limit. We recommend permissive hypercapnia targeting a pH > 7.20 (strong agreement). In children at risk for pulmonary hypertension, we recommend to maintain normal pH (strong agreement). We recommend using pH as non-pharmacologic tool to modify pulmonary vascular resistance for specific disease conditions (strong agreement).
There are no studies identifying optimal CO2 in the presence or absence of lung injury. Normal CO2 levels (i.e. 35–45 mmHg) should be expected in healthy children. Increasing ventilator settings in an attempt to normalise mild hypercapnia may be detrimental [148]. There are no outcome data on the effects of permissive hypercapnia or the lowest tolerable pH [149, 150]. Normal pH and PCO2 should be targeted in severe traumatic brain injury and pulmonary hypertension.

Weaning and extubation readiness testing

There are insufficient data to recommend on the timing of initiation (strong agreement) and approach to weaning (strong agreement) and the routine use of any extubation readiness testing that is superior to clinical judgement (strong agreement).
Assessing daily weaning readiness may reduce duration of ventilation [150152]. There are no data supporting superiority of any approach such as protocolised weaning, closed-loop protocols, nurse-led weaning, or the usefulness of predictors for weaning success [123, 151, 153172]. There are no data to recommend how to perform and evaluate extubation readiness testing (ERT), although some studies suggest that using a minimum pressure support overestimates extubation success [173175].
There are insufficient data to recommend the routine use of non-invasive respiratory support after extubation for any patient category. However, early application of NIV combined with cough-assist techniques should be considered in neuromuscular diseases to prevent extubation failure (strong agreement).
There is only one small pilot study suggesting that the use of NIV may prevent reintubation in children at high-risk for extubation failure [42]. Although appealing, post-extubation NIV in combination with cough-assist techniques has not been confirmed to prevent extubation failure in neuromuscular patients yet [176179].

Supportive measures

Humidification, suctioning, positioning and chest physiotherapy

We recommend airway humidification in ventilated children, but there are insufficient data to recommend any type of humidification (strong agreement).
There are no data showing superiority or inferiority of either active or passive humidification [180182]. However, there is great variability amongst commercially available HMEs regarding humidification efficacy, dead space volumes and imposed work of breathing [183].
There are insufficient data to recommend on the approach to endotracheal suctioning (strong agreement), but the likelihood of derecruitment during suctioning needs to be minimised (strong agreement). The routine instillation of isotonic saline prior to endotracheal suctioning is not recommended (strong agreement).
There is no scientific basis for routine endotracheal suctioning or the approach to suctioning (open vs. closed) albeit that open suctioning may lead to more derecruitment or the instillation of isotonic saline prior to suctioning [140, 184188].
There are insufficient data to recommend chest physiotherapy as a standard of care (strong agreement). Use of cough-assist techniques should be considered for patients with neuromuscular disease on NIV to prevent failure (strong agreement).
Chest physiotherapy for airway clearance and sputum evacuation cannot be considered standard of care [189, 190]. It is unclear whether cough-assist techniques add any value to patients with neuromuscular disease who require NIV, but their use should be considered to prevent endotracheal intubation [176, 178, 191195].
We recommend that all children should be maintained with the head of the bed elevated to 30–45°, unless specific disease conditions dictate otherwise (strong agreement).

Endotracheal tube and patient circuit

Endotracheal high-volume low-pressure cuffed tubes can be used in all children. Meticulous attention to cuff pressure monitoring is indicated (strong agreement).
Cuffed ETTs can be safely used without increased risk for post-extubation stridor when the cuff pressure is maintained ≤20 cmH2O [196, 197]. Cuff pressure monitoring has to be routinely performed using cuff-specific devices [198].
Dead space apparatus should be reduced as much as possible by using appropriate patient circuits and reduction of swivels (strong agreement).
Any component that is added after the Y piece increases dead space and may have clinical relevance [199].
Double-limb circuits should be used for invasive ventilation (strong agreement), and preferentially a single-limb circuit for NIV (93% agreement).
Single-limb circuits are very sensitive to leaks [200]. Therefore, single-limb home ventilators are not suitable for invasive ventilation in the PICU [201].

Miscellaneous

We recommend avoiding routine use of hand-ventilation. If needed, pressure measurements and pressure pop-off valves should be used (strong agreement).
Manual ventilation should be avoided to prevent the delivery of inappropriate high airway pressure and/or volume [202].

Specific patient populations

Lung hypoplasia

Recommendations for children with acute restrictive, obstructive or mixed disease should also be applied to children with lung hypoplasia syndromes who suffer from acute deterioration (strong agreement).

Chronically ventilated/congenital patient

In severe or progressive underlying disease, we recommend considering whether or not invasive ventilation is beneficial for the particular child (strong agreement). For chronic neuromuscular children and other children on chronic ventilation with acute deterioration, the same recommendations as for children with normal lungs, acute restrictive, acute obstructive or mixed disease are applicable (strong agreement). Preservation of spontaneous breathing should be aimed for in these children (strong agreement).
Invasive ventilation may be life-saving, but the risk/benefit ratio should be carefully evaluated in each ventilator-dependent child who suffers from acute exacerbations or in children with life-limiting congenital disorders [203208]. In the absence of data, we suggest that the recommendations for children with acute restrictive, obstructive or mixed disease are also applicable in this patient category.

Cardiac children

Positive pressure ventilation may reduce work of breathing and afterload in LV failure, but it may increase afterload in RV failure (strong agreement). In cardiac children with or without lung disease, the principles for any specific pathology will apply, but titration of ventilator settings should be carried out even more carefully (strong agreement). We cannot recommend on a specific level of PEEP in cardiac children with or without lung disease, irrespective of whether or not there is increased pulmonary blood flow, but sufficient PEEP should be used to maintain end-expiratory lung volume (strong agreement).
Many of the assumptions on cardiopulmonary interactions in children are mainly based on adult data [209212]. For cardiac children, assisted rather than controlled ventilation may be preferable [57, 59]. However, in patients with passive pulmonary blood flow, spontaneous breathing on CPAP 3 5 cmH2O reduced FRC and increased PVRI, whereas MV with PEEP 3–5 cmH2O did not [213]. Neither CPAP nor PEEP ≤15 cmH2O impaired venous return or cardiac output after cardiac surgery [214217]. This means that, for cardiac children, the same principles for MV apply as for non-cardiac children [211, 218].

Reflecting on the consensus conference

Our consensus conference has clearly but also painfully emphasised that there is very little, if any, scientific evidence supporting our current approach to paediatric mechanical ventilation (Fig. 1; Tables 1, 2). Given this absence of evidence, our recommendations reflect a consensus on a specific topic that we agreed upon. To date, most of what we do is either based on personal experiences or how it works in adults. In fact, when it comes to paediatric MV “each paediatric critical care practitioner is a maven and savant and knows the only correct way to ventilate a child” (by Christopher Newth). This lack of scientific background should challenge everybody involved in paediatric mechanical ventilation to embark on local or global initiatives to fill this huge gap of knowledge. We are in desperate need of well-designed studies and must constantly remind us that “Anecdotes” are not plural for “Evidence” [219221]. This European paediatric mechanical ventilation consensus conference is a first step towards a better and substantiated use of this life-saving technique in critically ill children (Figs. 2, 3, 4).
Table 1
Overview of published literature related to all aspects of paediatric mechanical ventilation for the disease conditions discussed in the consensus conference
Subject
Available data
Applicability to specific disease conditions
RCT
Observational
Non-invasive support
 Use of HFNC
None
Yes
Healthy lungs, all disease conditions
 Use of CPAP
None
Yes
All disease conditions
 Non-invasive ventilation
Yes (n = 2)
Yes
All disease conditions
Ventilator modes
 Conventional modes
None
Yes
Healthy lungs, all disease conditions
 HFOV
Yes (n = 2)
Yes
All disease conditions
 HFJV, HFPV
No
Yes
All disease conditions
 Liquid ventilation
No
No
All disease conditions
 ECMO
No
Yes
All disease conditions
Setting the ventilator
 Patient-ventilator synchrony
No
Yes
All disease conditions
 I:E ratio/inspiratory time
No
No
All disease conditions
 Maintaining spontaneous breathing
No
No
Healthy lungs, all disease conditions
 Plateau pressure
No
No
Healthy lungs, all disease conditions
 Delta pressure/driving pressure
No
No
Healthy lungs, all disease conditions
 Tidal volume
No
Yes
Healthy lungs, all disease conditions
 PEEP
No
Yes
Healthy lungs, all disease conditions, upper airway disorders
 Lung recruitment
No
Yes
Healthy lungs, all disease conditions
Monitoring
 Ventilation
No
Yes
Healthy lungs, all disease conditions
 Oxygenation
No
Yes
Healthy lungs, all disease conditions
 Tidal volume
No
Yes
Healthy lungs, all disease conditions
 Lung mechanics
No
Yes
Healthy lungs, all disease conditions
 Lung ultrasound
No
Yes
All disease conditions
Targets for oxygenation and ventilation
 Oxygenation
No
No
Healthy lungs, all disease conditions
 Ventilation
No
No
Healthy lungs, all disease conditions
Weaning and extubation readiness testing
 Weaning
Yes (n = 2)
Yes
Healthy lungs, all disease conditions
 NIV after extubation
No
Yes
All disease conditions
 Use of corticosteroids
Yes
Yes
Healthy lungs, all disease conditions
Supportive measures
 Humidification
No
Yes
Healthy lungs, all disease conditions
 Endotracheal suctioning
No
Yes
Healthy lungs, all disease conditions
 Chest physiotherapy
No
Yes
All disease conditions
 Bed head elevation
No
No
Healthy lungs, all disease conditions
 ETT and patient circuit
No
Yes
Healthy lungs, all disease conditions
 Reducing dead space apparatus
No
Yes
Healthy lungs, all disease conditions
 Heliox
No
Yes
Obstructive airway disease
 Use of manual ventilation
No
No
Healthy lungs, all disease conditions
Table 2
Potential clinical implications of the recommendations from the paediatric mechanical ventilation consensus conference (PEMVECC)
Non-invasive support
 High-flow nasal cannula
No recommendation
 Continuous positive airway pressure
Consider in mixed disease
Consider in mild-to-moderate cardiorespiratory failure
No recommendation on optimal interface
 Non-invasive ventilation
Consider in mild-to-moderate disease, but not severe disease
Consider in mild-to-moderate cardiorespiratory failure
Should not delay intubation
No recommendation on optimal interface
Invasive ventilation
 Mode
No recommendation
 High-frequency oscillatory ventilation
Consider when conventional ventilation fails
May be used in cardiac patients
 High-frequency jet/percussive ventilation
No recommendation
Do not use high-frequency jet ventilation in obstructive airway disease
 Liquid ventilation
Do not use
 Extra-corporeal life support
Consider in reversible disease if conventional ventilation and/or HFOV fails
 Triggering
Target patient-ventilator synchrony
 Inspiratory time/I:E ratio
Set inspiratory time by respiratory system mechanics and underlying disease (use time constant and observe flow-time scalar). Use higher rates in restrictive disease
 Maintaining spontaneous breathing
No recommendation
 Plateau pressure
Keep ≤28 or ≤29–32 cmH2O with increased chest wall elastance, ≤30 cmH2O in obstructive airway disease
 Delta pressure
Keep ≤10 cmH2O for healthy lungs, unknown for any disease condition
 Tidal volume
Keep ≤10 mL/kg ideal bodyweight, maybe lower in lung hypoplasia syndromes
 PEEP
5−8 cmH2O, higher PEEP necessary dictated by underlying disease severity (also in cardiac patients)
Use PEEP titration, consider lung recruitment (also in cardiac patients)
Add PEEP in obstructive airway disease when there is air-trapping and to facilitate triggering
Use PEEP to stent upper airways in case of malacia
Monitoring
 Ventilation
Measure PCO2 in arterial or capillary blood samples
Consider transcutaneous CO2 monitoring
Measure end-tidal CO2 in all ventilated children
 Oxygenation
Measure SpO2 in all ventilated children
Measure arterial PO2 in moderate-to-severe disease
Measure pH, lactate and central venous saturation in moderate-to-severe disease
Measure central venous saturation as marker for cardiac output
 Tidal volume
Measure near Y-piece of patient circuit in children <10 kg
 Lung mechanics
Measure peak inspiratory pressure and/or plateau pressure, mean airway pressure, positive end-expiratory pressure. Consider measuring transpulmonary pressure, (dynamic) compliance, intrinsic PEEP
Monitor pressure–time and flow-time scalar
 Lung ultrasound
Consider in appropriately trained hands
Targets
 Oxygenation
SpO2 ≥ 95% when breathing room air for healthy lungs
No threshold for any disease condition or cardiac patients, but keep SpO2 ≤97%
For PARDS: SpO2 92–97% when PEEP < 10cmH2O and 88–92% when PEEP ≥10 cmH2O
 Ventilation
PCO2 35–45 mmHg for healthy lungs
Higher PCO2 accepted for acute (non-)pulmonary patients unless specific diseases dictate otherwise
Target pH >7.20
Target normal pH for patients with pulmonary hypertension
Weaning and extubation readiness
 Weaning
Start weaning as soon as possible
Perform daily extubation readiness testing
 Non-invasive ventilation after extubation
Consider non-invasive ventilation in neuromuscular patients
 Corticosteroids
Use in patients at increased risk for post-extubation stridor
Supportive measures
 Humidification
Use humidification
 Endotracheal suctioning
Do not perform routinely, only on indication. No routine instillation of isotonic saline prior to suctioning
 Chest physiotherapy
Do not use routinely
Consider using cough-assist devices in neuromuscular patients
 Positioning
Maintain head of bed elevated 30–45°
 Endotracheal tube and patient circuit
Use cuffed endotracheal tube, keep cuff pressure ≤20 cmH2O
Minimise dead space by added components
Use double-limb circuits for invasive ventilation
Do not use home ventilators during the acute phase in the intensive care unit
Miscellanenous
 Hand-ventilation
Avoid hand ventilation unless specific conditions dictate otherwise

Acknowledgements

This project has received funding and technical support by the European Society for Paediatric and Neonatal Intensive Care (ESPNIC) and by the Deptartment of Anaesthesiology and Critical Care, Catholic University of the Sacred Heart, University Hospital “A.Gemelli” (Rome, Italy). We like to express our sincerest gratitude to Professor Massimo Antonelli and Professor Giorgio Conti for facilitating the 2-day PEMVECC meeting at the Catholic University of the Sacred Heart, University Hospital “A.Gemelli”, Rome, Italy. We also like to thank Mrs. Sjoukje van der Werf from the library of the University Medical Center Groningen for performing the literature search.

Compliance with ethical standards

Conflicts of interest

The authors declare the following conflicts of interest: M.K. received research funding from Stichting Beatrix Kinderziekenhuis, Fonds NutsOhra, ZonMW, UMC Groningen, TerMeulen Fonds/Royal Dutch Academy of Sciences and VU university medical center and serves as a consultant for and has received lecture fees from Vyaire. His institution received research technical support from Vyaire and Applied Biosignals. P.B. received honoraria from Abbvie, a travel grant from Maquet and served on an advisory board for Masimo. F.R. received consultancy fees from Vitalaire and Philips Respironics. P.R. received travel support from, Maquet, Acutronic, Nycomed, Philips, to run international teaching courses on mechanical ventilation. His institution received funding from Maquet, SLE, Stephan (unrestricted funding for clinical research) and from the European Union’s Framework Programme for Research and Innovation Horizon2020 (CRADL, Grant no. 668259). M.P. received honoraria from Air-liquide Healthcare and served as speaker for Fisher & Paykel and ResMed. His institution received disposable materials from Philips, ResMed and Fisher & Paykel. D.d.L. has received travel grants from Acutronic, consultancy fees from Vyaire and Acutronic and research technical support from Vyaire and Acutronic. P.-H.J. received consultancy fees from Air Liquide Medical System (finished in 2013), Abbvie as member of the French Board of Neonatologists, and punctual fees from CHIESI France for oral presentations. G.W., D.M., A.M., J.H., E.J., E.C., J.B. and J.L.H. have no conflicts of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Anästhesiologie

Kombi-Abonnement

Mit e.Med Anästhesiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes AINS, den Premium-Inhalten der AINS-Fachzeitschriften, inklusive einer gedruckten AINS-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Santschi M, Jouvet P, Leclerc F, Gauvin F, Newth CJ, Carroll CL, Flori H, Tasker RC, Rimensberger PC, Randolph AG, Investigators P, Pediatric Acute Lung I, Sepsis Investigators N, European Society of P, Neonatal Intensive C (2010) Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med 11:681–689PubMedCrossRef Santschi M, Jouvet P, Leclerc F, Gauvin F, Newth CJ, Carroll CL, Flori H, Tasker RC, Rimensberger PC, Randolph AG, Investigators P, Pediatric Acute Lung I, Sepsis Investigators N, European Society of P, Neonatal Intensive C (2010) Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med 11:681–689PubMedCrossRef
2.
Zurück zum Zitat Duyndam A, Ista E, Houmes RJ, van Driel B, Reiss I, Tibboel D (2011) Invasive ventilation modes in children: a systematic review and meta-analysis. Crit Care 15:R24PubMedPubMedCentralCrossRef Duyndam A, Ista E, Houmes RJ, van Driel B, Reiss I, Tibboel D (2011) Invasive ventilation modes in children: a systematic review and meta-analysis. Crit Care 15:R24PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Chatburn RL, El-Khatib M, Mireles-Cabodevila E (2014) A taxonomy for mechanical ventilation: 10 fundamental maxims. Respir Care 59:1747–1763PubMedCrossRef Chatburn RL, El-Khatib M, Mireles-Cabodevila E (2014) A taxonomy for mechanical ventilation: 10 fundamental maxims. Respir Care 59:1747–1763PubMedCrossRef
4.
Zurück zum Zitat Chatburn RL (2007) Classification of ventilator modes: update and proposal for implementation. Respir Care 52:301–323PubMed Chatburn RL (2007) Classification of ventilator modes: update and proposal for implementation. Respir Care 52:301–323PubMed
5.
Zurück zum Zitat Fitch K, Bernstein SJ, Aguilar MD, Burnand B, LaCalle JR, Lazaro P, van het Loo M, McDonell J, Vader JP, Kahan JP (2001) The RAND/UCLA appropriateness method user’s manual. RAND, Santa Monica Fitch K, Bernstein SJ, Aguilar MD, Burnand B, LaCalle JR, Lazaro P, van het Loo M, McDonell J, Vader JP, Kahan JP (2001) The RAND/UCLA appropriateness method user’s manual. RAND, Santa Monica
6.
Zurück zum Zitat Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr, Zaza S, Group GW (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490PubMedCrossRef Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr, Zaza S, Group GW (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490PubMedCrossRef
7.
Zurück zum Zitat Schwabbauer N, Berg B, Blumenstock G, Haap M, Hetzel J, Riessen R (2014) Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV). BMC Anesthesiol 14:66PubMedPubMedCentralCrossRef Schwabbauer N, Berg B, Blumenstock G, Haap M, Hetzel J, Riessen R (2014) Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV). BMC Anesthesiol 14:66PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Pham TM, O’Malley L, Mayfield S, Martin S, Schibler A (2015) The effect of high flow nasal cannula therapy on the work of breathing in infants with bronchiolitis. Pediatr Pulmonol 50:713–720PubMedCrossRef Pham TM, O’Malley L, Mayfield S, Martin S, Schibler A (2015) The effect of high flow nasal cannula therapy on the work of breathing in infants with bronchiolitis. Pediatr Pulmonol 50:713–720PubMedCrossRef
9.
Zurück zum Zitat Hough JL, Pham TM, Schibler A (2014) Physiologic effect of high-flow nasal cannula in infants with bronchiolitis. Pediatr Crit Care Med 15:e214–e219PubMedCrossRef Hough JL, Pham TM, Schibler A (2014) Physiologic effect of high-flow nasal cannula in infants with bronchiolitis. Pediatr Crit Care Med 15:e214–e219PubMedCrossRef
10.
Zurück zum Zitat Mayfield S, Bogossian F, O’Malley L, Schibler A (2014) High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health 50:373–378PubMedCrossRef Mayfield S, Bogossian F, O’Malley L, Schibler A (2014) High-flow nasal cannula oxygen therapy for infants with bronchiolitis: pilot study. J Paediatr Child Health 50:373–378PubMedCrossRef
11.
Zurück zum Zitat Mayfield S, Jauncey-Cooke J, Hough JL, Schibler A, Gibbons K, Bogossian F (2014) High-flow nasal cannula therapy for respiratory support in children. Cochrane Database Syst Rev: CD009850 Mayfield S, Jauncey-Cooke J, Hough JL, Schibler A, Gibbons K, Bogossian F (2014) High-flow nasal cannula therapy for respiratory support in children. Cochrane Database Syst Rev: CD009850
12.
Zurück zum Zitat Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, Cambonie G (2013) Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med 39:1088–1094PubMedCrossRef Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, Cambonie G (2013) Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med 39:1088–1094PubMedCrossRef
13.
Zurück zum Zitat Rubin S, Ghuman A, Deakers T, Khemani R, Ross P, Newth CJ (2014) Effort of breathing in children receiving high-flow nasal cannula. Pediatr Crit Care Med 15:1–6PubMedCrossRef Rubin S, Ghuman A, Deakers T, Khemani R, Ross P, Newth CJ (2014) Effort of breathing in children receiving high-flow nasal cannula. Pediatr Crit Care Med 15:1–6PubMedCrossRef
14.
Zurück zum Zitat Chisti MJ, Salam MA, Smith JH, Ahmed T, Pietroni MA, Shahunja KM, Shahid AS, Faruque AS, Ashraf H, Bardhan PK, Sharifuzzaman, Graham SM, Duke T (2015) Bubble continuous positive airway pressure for children with severe pneumonia and hypoxaemia in Bangladesh: an open, randomised controlled trial. Lancet 386:1057–1065PubMedCrossRef Chisti MJ, Salam MA, Smith JH, Ahmed T, Pietroni MA, Shahunja KM, Shahid AS, Faruque AS, Ashraf H, Bardhan PK, Sharifuzzaman, Graham SM, Duke T (2015) Bubble continuous positive airway pressure for children with severe pneumonia and hypoxaemia in Bangladesh: an open, randomised controlled trial. Lancet 386:1057–1065PubMedCrossRef
15.
Zurück zum Zitat Kelly GS, Simon HK, Sturm JJ (2013) High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care 29:888–892PubMedCrossRef Kelly GS, Simon HK, Sturm JJ (2013) High-flow nasal cannula use in children with respiratory distress in the emergency department: predicting the need for subsequent intubation. Pediatr Emerg Care 29:888–892PubMedCrossRef
16.
Zurück zum Zitat Kneyber MC (2013) Question 1: Is there a role for high-flow nasal cannula oxygen therapy to prevent endotracheal intubation in children with viral bronchiolitis? Arch Dis Child 98:1018–1020PubMedCrossRef Kneyber MC (2013) Question 1: Is there a role for high-flow nasal cannula oxygen therapy to prevent endotracheal intubation in children with viral bronchiolitis? Arch Dis Child 98:1018–1020PubMedCrossRef
17.
Zurück zum Zitat McKiernan C, Chua LC, Visintainer PF, Allen H (2010) High flow nasal cannulae therapy in infants with bronchiolitis. J Pediatr 156:634–638PubMedCrossRef McKiernan C, Chua LC, Visintainer PF, Allen H (2010) High flow nasal cannulae therapy in infants with bronchiolitis. J Pediatr 156:634–638PubMedCrossRef
18.
Zurück zum Zitat Modesto IAV, Khemani RG, Medina A, Del Villar Guerra P, Molina Cambra A (2017) Bayes to the rescue: continuous positive airway pressure has less mortality than high-flow oxygen. Pediatr Crit Care Med 18:e92–e99CrossRef Modesto IAV, Khemani RG, Medina A, Del Villar Guerra P, Molina Cambra A (2017) Bayes to the rescue: continuous positive airway pressure has less mortality than high-flow oxygen. Pediatr Crit Care Med 18:e92–e99CrossRef
19.
Zurück zum Zitat Riese J, Fierce J, Riese A, Alverson BK (2015) Effect of a hospital-wide high-flow nasal cannula protocol on clinical outcomes and resource utilization of bronchiolitis patients admitted to the PICU. Hosp Pediatr 5:613–618PubMedCrossRef Riese J, Fierce J, Riese A, Alverson BK (2015) Effect of a hospital-wide high-flow nasal cannula protocol on clinical outcomes and resource utilization of bronchiolitis patients admitted to the PICU. Hosp Pediatr 5:613–618PubMedCrossRef
20.
Zurück zum Zitat Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, Hough JL (2011) Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med 37:847–852PubMedCrossRef Schibler A, Pham TM, Dunster KR, Foster K, Barlow A, Gibbons K, Hough JL (2011) Reduced intubation rates for infants after introduction of high-flow nasal prong oxygen delivery. Intensive Care Med 37:847–852PubMedCrossRef
21.
Zurück zum Zitat Wing R, James C, Maranda LS, Armsby CC (2012) Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. Pediatr Emerg Care 28:1117–1123PubMedCrossRef Wing R, James C, Maranda LS, Armsby CC (2012) Use of high-flow nasal cannula support in the emergency department reduces the need for intubation in pediatric acute respiratory insufficiency. Pediatr Emerg Care 28:1117–1123PubMedCrossRef
22.
Zurück zum Zitat Borckink I, Essouri S, Laurent M, Albers MJ, Burgerhof JG, Tissieres P, Kneyber MC (2014) Infants with severe respiratory syncytial virus needed less ventilator time with nasal continuous airways pressure then invasive mechanical ventilation. Acta Paediatr 103:81–85PubMedCrossRef Borckink I, Essouri S, Laurent M, Albers MJ, Burgerhof JG, Tissieres P, Kneyber MC (2014) Infants with severe respiratory syncytial virus needed less ventilator time with nasal continuous airways pressure then invasive mechanical ventilation. Acta Paediatr 103:81–85PubMedCrossRef
23.
Zurück zum Zitat Cambonie G, Milesi C, Jaber S, Amsallem F, Barbotte E, Picaud JC, Matecki S (2008) Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med 34:1865–1872PubMedCrossRef Cambonie G, Milesi C, Jaber S, Amsallem F, Barbotte E, Picaud JC, Matecki S (2008) Nasal continuous positive airway pressure decreases respiratory muscles overload in young infants with severe acute viral bronchiolitis. Intensive Care Med 34:1865–1872PubMedCrossRef
24.
Zurück zum Zitat Donlan M, Fontela PS, Puligandla PS (2011) Use of continuous positive airway pressure (CPAP) in acute viral bronchiolitis: a systematic review. Pediatr Pulmonol 46:736–746PubMedCrossRef Donlan M, Fontela PS, Puligandla PS (2011) Use of continuous positive airway pressure (CPAP) in acute viral bronchiolitis: a systematic review. Pediatr Pulmonol 46:736–746PubMedCrossRef
25.
Zurück zum Zitat Essouri S, Durand P, Chevret L, Balu L, Devictor D, Fauroux B, Tissieres P (2011) Optimal level of nasal continuous positive airway pressure in severe viral bronchiolitis. Intensive Care Med 37:2002–2007PubMedCrossRef Essouri S, Durand P, Chevret L, Balu L, Devictor D, Fauroux B, Tissieres P (2011) Optimal level of nasal continuous positive airway pressure in severe viral bronchiolitis. Intensive Care Med 37:2002–2007PubMedCrossRef
26.
Zurück zum Zitat Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, Combonie G (2013) Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med 39:1088–1094PubMedCrossRef Milesi C, Baleine J, Matecki S, Durand S, Combes C, Novais AR, Combonie G (2013) Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med 39:1088–1094PubMedCrossRef
27.
Zurück zum Zitat Milesi C, Matecki S, Jaber S, Mura T, Jacquot A, Pidoux O, Chautemps N, Novais AR, Combes C, Picaud JC, Cambonie G (2013) 6 cmH2O continuous positive airway pressure versus conventional oxygen therapy in severe viral bronchiolitis: a randomized trial. Pediatr Pulmonol 48:45–51PubMedCrossRef Milesi C, Matecki S, Jaber S, Mura T, Jacquot A, Pidoux O, Chautemps N, Novais AR, Combes C, Picaud JC, Cambonie G (2013) 6 cmH2O continuous positive airway pressure versus conventional oxygen therapy in severe viral bronchiolitis: a randomized trial. Pediatr Pulmonol 48:45–51PubMedCrossRef
28.
Zurück zum Zitat Sinha IP, McBride AK, Smith R, Fernandes RM (2015) CPAP and high-flow nasal cannula oxygen in bronchiolitis. Chest 148:810–823PubMedCrossRef Sinha IP, McBride AK, Smith R, Fernandes RM (2015) CPAP and high-flow nasal cannula oxygen in bronchiolitis. Chest 148:810–823PubMedCrossRef
29.
Zurück zum Zitat Fortenberry JD, Del Toro J, Jefferson LS, Evey L, Haase D (1995) Management of pediatric acute hypoxemic respiratory insufficiency with bilevel positive pressure (BiPAP) nasal mask ventilation. Chest 108:1059–1064PubMedCrossRef Fortenberry JD, Del Toro J, Jefferson LS, Evey L, Haase D (1995) Management of pediatric acute hypoxemic respiratory insufficiency with bilevel positive pressure (BiPAP) nasal mask ventilation. Chest 108:1059–1064PubMedCrossRef
30.
Zurück zum Zitat Pancera CF, Hayashi M, Fregnani JH, Negri EM, Deheinzelin D, de Camargo B (2008) Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol 30:533–538PubMedCrossRef Pancera CF, Hayashi M, Fregnani JH, Negri EM, Deheinzelin D, de Camargo B (2008) Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol 30:533–538PubMedCrossRef
31.
Zurück zum Zitat Schiller O, Schonfeld T, Yaniv I, Stein J, Kadmon G, Nahum E (2009) Bi-level positive airway pressure ventilation in pediatric oncology patients with acute respiratory failure. J Intensive Care Med 24:383–388PubMedCrossRef Schiller O, Schonfeld T, Yaniv I, Stein J, Kadmon G, Nahum E (2009) Bi-level positive airway pressure ventilation in pediatric oncology patients with acute respiratory failure. J Intensive Care Med 24:383–388PubMedCrossRef
32.
Zurück zum Zitat Piastra M, De Luca D, Pietrini D, Pulitano S, D’Arrigo S, Mancino A, Conti G (2009) Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med 35:1420–1427PubMedCrossRef Piastra M, De Luca D, Pietrini D, Pulitano S, D’Arrigo S, Mancino A, Conti G (2009) Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med 35:1420–1427PubMedCrossRef
33.
Zurück zum Zitat Gupta P, Kuperstock JE, Hashmi S, Arnolde V, Gossett JM, Prodhan P, Venkataraman S, Roth SJ (2013) Efficacy and predictors of success of noninvasive ventilation for prevention of extubation failure in critically ill children with heart disease. Pediatr Cardiol 34:964–977PubMedCrossRef Gupta P, Kuperstock JE, Hashmi S, Arnolde V, Gossett JM, Prodhan P, Venkataraman S, Roth SJ (2013) Efficacy and predictors of success of noninvasive ventilation for prevention of extubation failure in critically ill children with heart disease. Pediatr Cardiol 34:964–977PubMedCrossRef
34.
Zurück zum Zitat Kovacikova L, Skrak P, Dobos D, Zahorec M (2014) Noninvasive positive pressure ventilation in critically ill children with cardiac disease. Pediatr Cardiol 35:676–683PubMedCrossRef Kovacikova L, Skrak P, Dobos D, Zahorec M (2014) Noninvasive positive pressure ventilation in critically ill children with cardiac disease. Pediatr Cardiol 35:676–683PubMedCrossRef
35.
Zurück zum Zitat Chin K, Takahashi K, Ohmori K, Toru I, Matsumoto H, Niimi A, Doi H, Ikeda T, Nakahata T, Komeda M, Mishima M (2007) Noninvasive ventilation for pediatric patients under 1 year of age after cardiac surgery. J Thorac Cardiovasc Surg 134:260–261PubMedCrossRef Chin K, Takahashi K, Ohmori K, Toru I, Matsumoto H, Niimi A, Doi H, Ikeda T, Nakahata T, Komeda M, Mishima M (2007) Noninvasive ventilation for pediatric patients under 1 year of age after cardiac surgery. J Thorac Cardiovasc Surg 134:260–261PubMedCrossRef
36.
Zurück zum Zitat Fernandez Lafever S, Toledo B, Leiva M, Padron M, Balseiro M, Carrillo A, Lopez- Herce J (2016) Non-invasive mechanical ventilation after heart surgery in children. BMC Pulm Med 16:167PubMedPubMedCentralCrossRef Fernandez Lafever S, Toledo B, Leiva M, Padron M, Balseiro M, Carrillo A, Lopez- Herce J (2016) Non-invasive mechanical ventilation after heart surgery in children. BMC Pulm Med 16:167PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Thill PJ, McGuire JK, Baden HP, Green TP, Checchia PA (2004) Noninvasive positive-pressure ventilation in children with lower airway obstruction. Pediatr Crit Care Med 5:337–342PubMedCrossRef Thill PJ, McGuire JK, Baden HP, Green TP, Checchia PA (2004) Noninvasive positive-pressure ventilation in children with lower airway obstruction. Pediatr Crit Care Med 5:337–342PubMedCrossRef
38.
Zurück zum Zitat Basnet S, Mander G, Andoh J, Klaska H, Verhulst S, Koirala J (2012) Safety, efficacy, and tolerability of early initiation of noninvasive positive pressure ventilation in pediatric patients admitted with status asthmaticus: a pilot study. Pediatr Crit Care Med 13:393–398PubMedCrossRef Basnet S, Mander G, Andoh J, Klaska H, Verhulst S, Koirala J (2012) Safety, efficacy, and tolerability of early initiation of noninvasive positive pressure ventilation in pediatric patients admitted with status asthmaticus: a pilot study. Pediatr Crit Care Med 13:393–398PubMedCrossRef
39.
Zurück zum Zitat Piastra M, Antonelli M, Caresta E, Chiaretti A, Polidori G, Conti G (2006) Noninvasive ventilation in childhood acute neuromuscular respiratory failure: a pilot study. Respiration 73:791–798PubMedCrossRef Piastra M, Antonelli M, Caresta E, Chiaretti A, Polidori G, Conti G (2006) Noninvasive ventilation in childhood acute neuromuscular respiratory failure: a pilot study. Respiration 73:791–798PubMedCrossRef
40.
Zurück zum Zitat Chen TH, Hsu JH, Wu JR, Dai ZK, Chen IC, Liang WC, Yang SN, Jong YJ (2014) Combined noninvasive ventilation and mechanical in-exsufflator in the treatment of pediatric acute neuromuscular respiratory failure. Pediatr Pulmonol 49:589–596PubMedCrossRef Chen TH, Hsu JH, Wu JR, Dai ZK, Chen IC, Liang WC, Yang SN, Jong YJ (2014) Combined noninvasive ventilation and mechanical in-exsufflator in the treatment of pediatric acute neuromuscular respiratory failure. Pediatr Pulmonol 49:589–596PubMedCrossRef
41.
Zurück zum Zitat Demaret P, Mulder A, Loeckx I, Trippaerts M, Lebrun F (2015) Non-invasive ventilation is useful in paediatric intensive care units if children are appropriately selected and carefully monitored. Acta Paediatr 104:861–871PubMedCrossRef Demaret P, Mulder A, Loeckx I, Trippaerts M, Lebrun F (2015) Non-invasive ventilation is useful in paediatric intensive care units if children are appropriately selected and carefully monitored. Acta Paediatr 104:861–871PubMedCrossRef
42.
Zurück zum Zitat Mayordomo-Colunga J, Medina A, Rey C, Concha A, Menendez S, Los Arcos M, Garcia I (2010) Non invasive ventilation after extubation in paediatric patients: a preliminary study. BMC Pediatr 10:29PubMedPubMedCentralCrossRef Mayordomo-Colunga J, Medina A, Rey C, Concha A, Menendez S, Los Arcos M, Garcia I (2010) Non invasive ventilation after extubation in paediatric patients: a preliminary study. BMC Pediatr 10:29PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Fioretto JR, Ribeiro CF, Carpi MF, Bonatto RC, Moraes MA, Fioretto EB, Fagundes DJ (2015) Comparison between noninvasive mechanical ventilation and standard oxygen therapy in children up to 3 years old with respiratory failure after extubation: a pilot prospective randomized clinical study. Pediatr Crit Care Med 16:124–130PubMedCrossRef Fioretto JR, Ribeiro CF, Carpi MF, Bonatto RC, Moraes MA, Fioretto EB, Fagundes DJ (2015) Comparison between noninvasive mechanical ventilation and standard oxygen therapy in children up to 3 years old with respiratory failure after extubation: a pilot prospective randomized clinical study. Pediatr Crit Care Med 16:124–130PubMedCrossRef
44.
Zurück zum Zitat Yanez LJ, Yunge M, Emilfork M, Lapadula M, Alcantara A, Fernandez C, Lozano J, Contreras M, Conto L, Arevalo C, Gayan A, Hernandez F, Pedraza M, Feddersen M, Bejares M, Morales M, Mallea F, Glasinovic M, Cavada G (2008) A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med 9:484–489PubMedCrossRef Yanez LJ, Yunge M, Emilfork M, Lapadula M, Alcantara A, Fernandez C, Lozano J, Contreras M, Conto L, Arevalo C, Gayan A, Hernandez F, Pedraza M, Feddersen M, Bejares M, Morales M, Mallea F, Glasinovic M, Cavada G (2008) A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med 9:484–489PubMedCrossRef
45.
Zurück zum Zitat Calderini E, Chidini G, Pelosi P (2010) What are the current indications for noninvasive ventilation in children? Curr Opin Anaesthesiol 23:368–374PubMedCrossRef Calderini E, Chidini G, Pelosi P (2010) What are the current indications for noninvasive ventilation in children? Curr Opin Anaesthesiol 23:368–374PubMedCrossRef
46.
Zurück zum Zitat Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D (2006) Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med 7:329–334PubMedCrossRef Essouri S, Chevret L, Durand P, Haas V, Fauroux B, Devictor D (2006) Noninvasive positive pressure ventilation: five years of experience in a pediatric intensive care unit. Pediatr Crit Care Med 7:329–334PubMedCrossRef
47.
Zurück zum Zitat James CS, Hallewell CP, James DP, Wade A, Mok QQ (2011) Predicting the success of non-invasive ventilation in preventing intubation and re-intubation in the paediatric intensive care unit. Intensive Care Med 37:1994–2001PubMedCrossRef James CS, Hallewell CP, James DP, Wade A, Mok QQ (2011) Predicting the success of non-invasive ventilation in preventing intubation and re-intubation in the paediatric intensive care unit. Intensive Care Med 37:1994–2001PubMedCrossRef
48.
Zurück zum Zitat Mayordomo-Colunga J, Medina A, Rey C, Diaz JJ, Concha A, Los Arcos M, Menendez S (2009) Predictive factors of non invasive ventilation failure in critically ill children: a prospective epidemiological study. Intensive Care Med 35:527–536PubMedCrossRef Mayordomo-Colunga J, Medina A, Rey C, Diaz JJ, Concha A, Los Arcos M, Menendez S (2009) Predictive factors of non invasive ventilation failure in critically ill children: a prospective epidemiological study. Intensive Care Med 35:527–536PubMedCrossRef
49.
Zurück zum Zitat Munoz-Bonet JI, Flor-Macian EM, Brines J, Rosello-Millet PM, Cruz Llopis M, Lopez-Prats JL, Castillo S (2010) Predictive factors for the outcome of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med 11:675–680PubMedCrossRef Munoz-Bonet JI, Flor-Macian EM, Brines J, Rosello-Millet PM, Cruz Llopis M, Lopez-Prats JL, Castillo S (2010) Predictive factors for the outcome of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med 11:675–680PubMedCrossRef
50.
Zurück zum Zitat Piastra M, De Luca D, Marzano L, Stival E, Genovese O, Pietrini D, Conti G (2011) The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med 37:1510–1516PubMedCrossRef Piastra M, De Luca D, Marzano L, Stival E, Genovese O, Pietrini D, Conti G (2011) The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med 37:1510–1516PubMedCrossRef
51.
Zurück zum Zitat Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G, Rocco M, Maviglia R, Pennisi MA, Gonzalez-Diaz G, Meduri GU (2007) A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 35:18–25PubMedCrossRef Antonelli M, Conti G, Esquinas A, Montini L, Maggiore SM, Bello G, Rocco M, Maviglia R, Pennisi MA, Gonzalez-Diaz G, Meduri GU (2007) A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 35:18–25PubMedCrossRef
52.
Zurück zum Zitat Crulli B, Loron G, Nishisaki A, Harrington K, Essouri S, Emeriaud G (2016) Safety of paediatric tracheal intubation after non-invasive ventilation failure. Pediatr Pulmonol 51:165–172PubMedCrossRef Crulli B, Loron G, Nishisaki A, Harrington K, Essouri S, Emeriaud G (2016) Safety of paediatric tracheal intubation after non-invasive ventilation failure. Pediatr Pulmonol 51:165–172PubMedCrossRef
53.
Zurück zum Zitat Bernet V, Hug MI, Frey B (2005) Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med 6:660–664PubMedCrossRef Bernet V, Hug MI, Frey B (2005) Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med 6:660–664PubMedCrossRef
54.
Zurück zum Zitat Habashi NM (2005) Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med 33:S228–S240PubMedCrossRef Habashi NM (2005) Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med 33:S228–S240PubMedCrossRef
55.
Zurück zum Zitat Yehya N, Topjian AA, Thomas NJ, Friess SH (2014) Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome. Pediatr Crit Care Med 15:e147–e156PubMedPubMedCentralCrossRef Yehya N, Topjian AA, Thomas NJ, Friess SH (2014) Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome. Pediatr Crit Care Med 15:e147–e156PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Yehya N, Topjian AA, Lin R, Berg RA, Thomas NJ, Friess SH (2014) High frequency oscillation and airway pressure release ventilation in pediatric respiratory failure. Pediatr Pulmonol 49:707–715PubMedCrossRef Yehya N, Topjian AA, Lin R, Berg RA, Thomas NJ, Friess SH (2014) High frequency oscillation and airway pressure release ventilation in pediatric respiratory failure. Pediatr Pulmonol 49:707–715PubMedCrossRef
57.
Zurück zum Zitat Walsh MA, Merat M, La Rotta G, Joshi P, Joshi V, Tran T, Jarvis S, Caldarone CA, Van Arsdell GS, Redington AN, Kavanagh BP (2011) Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery. Crit Care Med 39:2599–2604PubMedCrossRef Walsh MA, Merat M, La Rotta G, Joshi P, Joshi V, Tran T, Jarvis S, Caldarone CA, Van Arsdell GS, Redington AN, Kavanagh BP (2011) Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery. Crit Care Med 39:2599–2604PubMedCrossRef
58.
Zurück zum Zitat Krishnan J, Morrison W (2007) Airway pressure release ventilation: a pediatric case series. Pediatr Pulmonol 42:83–88PubMedCrossRef Krishnan J, Morrison W (2007) Airway pressure release ventilation: a pediatric case series. Pediatr Pulmonol 42:83–88PubMedCrossRef
59.
Zurück zum Zitat de Carvalho WB, Kopelman BI, Gurgueira GL, Bonassa J (2000) Airway pressure release in postoperative cardiac surgery in pediatric patients. Rev Assoc Med Bras 46:166–173PubMedCrossRef de Carvalho WB, Kopelman BI, Gurgueira GL, Bonassa J (2000) Airway pressure release in postoperative cardiac surgery in pediatric patients. Rev Assoc Med Bras 46:166–173PubMedCrossRef
60.
Zurück zum Zitat Medina A, Modesto-Alapont V, Lobete C, Vidal-Mico S, Alvarez-Caro F, Pons- Odena M, Mayordomo-Colunga J, Ibiza-Palacios E (2014) Is pressure-regulated volume control mode appropriate for severely obstructed patients? J Crit Care 29:1041–1045PubMedCrossRef Medina A, Modesto-Alapont V, Lobete C, Vidal-Mico S, Alvarez-Caro F, Pons- Odena M, Mayordomo-Colunga J, Ibiza-Palacios E (2014) Is pressure-regulated volume control mode appropriate for severely obstructed patients? J Crit Care 29:1041–1045PubMedCrossRef
61.
Zurück zum Zitat Brenner B, Corbridge T, Kazzi A (2009) Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. Proc Am Thorac Soc 6:371–379PubMedCrossRef Brenner B, Corbridge T, Kazzi A (2009) Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. Proc Am Thorac Soc 6:371–379PubMedCrossRef
62.
Zurück zum Zitat Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL (1994) Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 22:1530–1539PubMedCrossRef Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL (1994) Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 22:1530–1539PubMedCrossRef
63.
Zurück zum Zitat Gupta P, Green JW, Tang X, Gall CM, Gossett JM, Rice TB, Kacmarek RM, Wetzel RC (2014) Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr 168(3):243–249PubMedCrossRef Gupta P, Green JW, Tang X, Gall CM, Gossett JM, Rice TB, Kacmarek RM, Wetzel RC (2014) Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr 168(3):243–249PubMedCrossRef
64.
Zurück zum Zitat Bateman ST, Borasino S, Asaro LA, Cheifetz IM, Diane S, Wypij D, Curley MA, Investigators RS (2016) Early high-frequency oscillatory ventilation in pediatric acute respiratory failure. a propensity score analysis. Am J Respir Crit Care Med 193:495–503PubMedPubMedCentralCrossRef Bateman ST, Borasino S, Asaro LA, Cheifetz IM, Diane S, Wypij D, Curley MA, Investigators RS (2016) Early high-frequency oscillatory ventilation in pediatric acute respiratory failure. a propensity score analysis. Am J Respir Crit Care Med 193:495–503PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Kneyber MC, van Heerde M, Markhorst DG (2014) It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr 168:861PubMedCrossRef Kneyber MC, van Heerde M, Markhorst DG (2014) It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr 168:861PubMedCrossRef
66.
Zurück zum Zitat Rimensberger PC, Bachman TE (2014) It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr 168:862–863PubMedCrossRef Rimensberger PC, Bachman TE (2014) It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr 168:862–863PubMedCrossRef
67.
Zurück zum Zitat Essouri S, Emeriaud G, Jouvet P (2014) It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr 168:861–862PubMedCrossRef Essouri S, Emeriaud G, Jouvet P (2014) It is too early to declare early or late rescue high-frequency oscillatory ventilation dead. JAMA Pediatr 168:861–862PubMedCrossRef
68.
Zurück zum Zitat Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO, Investigators OT, Canadian Critical Care Trials G (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368:795–805PubMedCrossRef Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO, Investigators OT, Canadian Critical Care Trials G (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368:795–805PubMedCrossRef
69.
Zurück zum Zitat Kneyber MC, van Heerde M, Markhorst DG (2012) Reflections on pediatric high- frequency oscillatory ventilation from a physiologic perspective. Respir Care 57:1496–1504PubMedCrossRef Kneyber MC, van Heerde M, Markhorst DG (2012) Reflections on pediatric high- frequency oscillatory ventilation from a physiologic perspective. Respir Care 57:1496–1504PubMedCrossRef
70.
Zurück zum Zitat Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, Adhikari NK (2010) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340:c2327PubMedCrossRef Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, Adhikari NK (2010) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340:c2327PubMedCrossRef
71.
Zurück zum Zitat Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, Group OS (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 368:806–813PubMedCrossRef Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, Group OS (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 368:806–813PubMedCrossRef
72.
Zurück zum Zitat Bojan M, Gioanni S, Mauriat P, Pouard P (2011) High-frequency oscillatory ventilation and short-term outcome in neonates and infants undergoing cardiac surgery: a propensity score analysis. Crit Care 15:R259PubMedPubMedCentralCrossRef Bojan M, Gioanni S, Mauriat P, Pouard P (2011) High-frequency oscillatory ventilation and short-term outcome in neonates and infants undergoing cardiac surgery: a propensity score analysis. Crit Care 15:R259PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Li S, Wang X, Li S, Yan J (2013) High-frequency oscillatory ventilation for cardiac surgery children with severe acute respiratory distress syndrome. Pediatr Cardiol 34:1382–1388PubMedCrossRef Li S, Wang X, Li S, Yan J (2013) High-frequency oscillatory ventilation for cardiac surgery children with severe acute respiratory distress syndrome. Pediatr Cardiol 34:1382–1388PubMedCrossRef
74.
Zurück zum Zitat Kornecki A, Shekerdemian LS, Adatia I, Bohn D (2002) High-frequency oscillation in children after Fontan operation. Pediatr Crit Care Med 3:144–147PubMedCrossRef Kornecki A, Shekerdemian LS, Adatia I, Bohn D (2002) High-frequency oscillation in children after Fontan operation. Pediatr Crit Care Med 3:144–147PubMedCrossRef
75.
Zurück zum Zitat Duval EL, Leroy PL, Gemke RJ, van Vught AJ (1999) High-frequency oscillatory ventilation in RSV bronchiolitis patients. Respir Med 93:435–440PubMedCrossRef Duval EL, Leroy PL, Gemke RJ, van Vught AJ (1999) High-frequency oscillatory ventilation in RSV bronchiolitis patients. Respir Med 93:435–440PubMedCrossRef
76.
Zurück zum Zitat Duval EL, Markhorst DG, Gemke RJ, van Vught AJ (2000) High-frequency oscillatory ventilation in pediatric patients. Neth J Med 56:177–185PubMedCrossRef Duval EL, Markhorst DG, Gemke RJ, van Vught AJ (2000) High-frequency oscillatory ventilation in pediatric patients. Neth J Med 56:177–185PubMedCrossRef
77.
Zurück zum Zitat Duval ELIM, van Vught AJ (2000) Status asthmaticus treated by high-frequency oscillatory ventilation. Pediatr Pulmonol 30:350–353PubMedCrossRef Duval ELIM, van Vught AJ (2000) Status asthmaticus treated by high-frequency oscillatory ventilation. Pediatr Pulmonol 30:350–353PubMedCrossRef
78.
Zurück zum Zitat Kneyber MC, Plotz FB, Sibarani-Ponsen RD, Markhorst DG (2005) High-frequency oscillatory ventilation (HFOV) facilitates CO2 elimination in small airway disease: the open airway concept. Respir Med 99:1459–1461PubMedCrossRef Kneyber MC, Plotz FB, Sibarani-Ponsen RD, Markhorst DG (2005) High-frequency oscillatory ventilation (HFOV) facilitates CO2 elimination in small airway disease: the open airway concept. Respir Med 99:1459–1461PubMedCrossRef
79.
Zurück zum Zitat Davis DA, Russo PA, Greenspan JS, Speziali G, Spitzer A (1994) High-frequency jet versus conventional ventilation in infants undergoing Blalock-Taussig shunts. Ann Thorac Surg 57:846–849PubMedCrossRef Davis DA, Russo PA, Greenspan JS, Speziali G, Spitzer A (1994) High-frequency jet versus conventional ventilation in infants undergoing Blalock-Taussig shunts. Ann Thorac Surg 57:846–849PubMedCrossRef
80.
Zurück zum Zitat Kocis KC, Meliones JN, Dekeon MK, Callow LB, Lupinetti FM, Bove EL (1992) High-frequency jet ventilation for respiratory failure after congenital heart surgery. Circulation 86:II127–II132PubMed Kocis KC, Meliones JN, Dekeon MK, Callow LB, Lupinetti FM, Bove EL (1992) High-frequency jet ventilation for respiratory failure after congenital heart surgery. Circulation 86:II127–II132PubMed
81.
Zurück zum Zitat Meliones JN, Bove EL, Dekeon MK, Custer JR, Moler FW, Callow LR, Wilton NC, Rosen DB (1991) High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation 84:III364–III368PubMed Meliones JN, Bove EL, Dekeon MK, Custer JR, Moler FW, Callow LR, Wilton NC, Rosen DB (1991) High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation 84:III364–III368PubMed
82.
Zurück zum Zitat Rizkalla NA, Dominick CL, Fitzgerald JC, Thomas NJ, Yehya N (2014) High- frequency percussive ventilation improves oxygenation and ventilation in pediatric patients with acute respiratory failure. J Crit Care 29(314):e311–e317 Rizkalla NA, Dominick CL, Fitzgerald JC, Thomas NJ, Yehya N (2014) High- frequency percussive ventilation improves oxygenation and ventilation in pediatric patients with acute respiratory failure. J Crit Care 29(314):e311–e317
83.
Zurück zum Zitat Cortiella J, Mlcak R, Herndon D (1999) High frequency percussive ventilation in pediatric patients with inhalation injury. J Burn Care Rehabil 20:232–235PubMedCrossRef Cortiella J, Mlcak R, Herndon D (1999) High frequency percussive ventilation in pediatric patients with inhalation injury. J Burn Care Rehabil 20:232–235PubMedCrossRef
84.
Zurück zum Zitat Yehya N, Dominick CL, Connelly JT, Davis DH, Minneci PC, Deans KJ, McCloskey JJ, Kilbaugh TJ (2014) High-frequency percussive ventilation and bronchoscopy during extracorporeal life support in children. ASAIO J 60:424–428PubMedCrossRef Yehya N, Dominick CL, Connelly JT, Davis DH, Minneci PC, Deans KJ, McCloskey JJ, Kilbaugh TJ (2014) High-frequency percussive ventilation and bronchoscopy during extracorporeal life support in children. ASAIO J 60:424–428PubMedCrossRef
85.
Zurück zum Zitat Carman B, Cahill T, Warden G, McCall J (2002) A prospective, randomized comparison of the Volume Diffusive Respirator vs conventional ventilation for ventilation of burned children. 2001 ABA paper. J Burn Care Rehabil 23:444–448PubMedCrossRef Carman B, Cahill T, Warden G, McCall J (2002) A prospective, randomized comparison of the Volume Diffusive Respirator vs conventional ventilation for ventilation of burned children. 2001 ABA paper. J Burn Care Rehabil 23:444–448PubMedCrossRef
86.
Zurück zum Zitat MacLaren G, Dodge-Khatami A, Dalton HJ, Writing C, MacLaren G, Dodge- Khatami A, Dalton HJ, Adachi I, Almodovar M, Annich G, Bartlett R, Bronicki R, Brown K, Butt W, Cooper D, Demuth M, D’Udekem Y, Fraser C, Guerguerian AM, Heard M, Horton S, Ichord R, Jaquiss R, Laussen P, Lequier L, Lou S, Marino B, McMullan M, Ogino M, Peek G, Pretre R, Rodefeld M, Schmidt A, Schwartz S, Shekerdemian L, Shime N, Sivarajan B, Stiller B, Thiagarajan R (2013) Joint statement on mechanical circulatory support in children: a consensus review from the Pediatric Cardiac Intensive Care Society and Extracorporeal Life Support Organization. Pediatr Crit Care Med 14:S1–S2PubMedCrossRef MacLaren G, Dodge-Khatami A, Dalton HJ, Writing C, MacLaren G, Dodge- Khatami A, Dalton HJ, Adachi I, Almodovar M, Annich G, Bartlett R, Bronicki R, Brown K, Butt W, Cooper D, Demuth M, D’Udekem Y, Fraser C, Guerguerian AM, Heard M, Horton S, Ichord R, Jaquiss R, Laussen P, Lequier L, Lou S, Marino B, McMullan M, Ogino M, Peek G, Pretre R, Rodefeld M, Schmidt A, Schwartz S, Shekerdemian L, Shime N, Sivarajan B, Stiller B, Thiagarajan R (2013) Joint statement on mechanical circulatory support in children: a consensus review from the Pediatric Cardiac Intensive Care Society and Extracorporeal Life Support Organization. Pediatr Crit Care Med 14:S1–S2PubMedCrossRef
87.
Zurück zum Zitat Blokpoel RG, Burgerhof JG, Markhorst DG, Kneyber MC (2016) Patient–ventilator asynchrony during assisted ventilation in children. Pediatr Crit Care Med 17:e204–e211PubMedCrossRef Blokpoel RG, Burgerhof JG, Markhorst DG, Kneyber MC (2016) Patient–ventilator asynchrony during assisted ventilation in children. Pediatr Crit Care Med 17:e204–e211PubMedCrossRef
88.
Zurück zum Zitat Vignaux L, Grazioli S, Piquilloud L, Bochaton N, Karam O, Jaecklin T, Levy-Jamet Y, Tourneux P, Jolliet P, Rimensberger PC (2013) Optimizing patient–ventilator synchrony during invasive ventilator assist in children and infants remains a difficult task. Pediatr Crit Care Med 14:e316–e325PubMedCrossRef Vignaux L, Grazioli S, Piquilloud L, Bochaton N, Karam O, Jaecklin T, Levy-Jamet Y, Tourneux P, Jolliet P, Rimensberger PC (2013) Optimizing patient–ventilator synchrony during invasive ventilator assist in children and infants remains a difficult task. Pediatr Crit Care Med 14:e316–e325PubMedCrossRef
89.
Zurück zum Zitat Vignaux L, Grazioli S, Piquilloud L, Bochaton N, Karam O, Levy-Jamet Y, Jaecklin T, Tourneux P, Jolliet P, Rimensberger PC (2013) Patient-ventilator asynchrony during noninvasive pressure support ventilation and neurally adjusted ventilatory assist in infants and children. Pediatr Crit Care Med 14:e357–e364PubMedCrossRef Vignaux L, Grazioli S, Piquilloud L, Bochaton N, Karam O, Levy-Jamet Y, Jaecklin T, Tourneux P, Jolliet P, Rimensberger PC (2013) Patient-ventilator asynchrony during noninvasive pressure support ventilation and neurally adjusted ventilatory assist in infants and children. Pediatr Crit Care Med 14:e357–e364PubMedCrossRef
90.
Zurück zum Zitat de la Oliva P, Schuffelmann C, Gomez-Zamora A, Villar J, Kacmarek RM (2012) Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med 38:838–846PubMedCrossRef de la Oliva P, Schuffelmann C, Gomez-Zamora A, Villar J, Kacmarek RM (2012) Asynchrony, neural drive, ventilatory variability and COMFORT: NAVA versus pressure support in pediatric patients. A non-randomized cross-over trial. Intensive Care Med 38:838–846PubMedCrossRef
91.
Zurück zum Zitat Piastra M, De Luca D, Costa R, Pizza A, De Sanctis R, Marzano L, Biasucci D, Visconti F, Conti G (2014) Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering from severe acute respiratory distress syndrome: nested study. J Crit Care 29(312):e311–e315 Piastra M, De Luca D, Costa R, Pizza A, De Sanctis R, Marzano L, Biasucci D, Visconti F, Conti G (2014) Neurally adjusted ventilatory assist vs pressure support ventilation in infants recovering from severe acute respiratory distress syndrome: nested study. J Crit Care 29(312):e311–e315
92.
Zurück zum Zitat Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T (2015) Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care-a randomized controlled trial. Pediatr Pulmonol 50:55–62PubMedCrossRef Kallio M, Peltoniemi O, Anttila E, Pokka T, Kontiokari T (2015) Neurally adjusted ventilatory assist (NAVA) in pediatric intensive care-a randomized controlled trial. Pediatr Pulmonol 50:55–62PubMedCrossRef
93.
Zurück zum Zitat Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41:242–255PubMedCrossRef Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41:242–255PubMedCrossRef
94.
Zurück zum Zitat Putensen C, Hering R, Muders T, Wrigge H (2005) Assisted breathing is better in acute respiratory failure. Curr Opin Crit Care 11:63–68PubMedCrossRef Putensen C, Hering R, Muders T, Wrigge H (2005) Assisted breathing is better in acute respiratory failure. Curr Opin Crit Care 11:63–68PubMedCrossRef
95.
Zurück zum Zitat Putensen C, Muders T, Varelmann D, Wrigge H (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12:13–18PubMedCrossRef Putensen C, Muders T, Varelmann D, Wrigge H (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12:13–18PubMedCrossRef
96.
Zurück zum Zitat Petrof BJ, Hussain SN (2016) Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care 22:67–72PubMedCrossRef Petrof BJ, Hussain SN (2016) Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care 22:67–72PubMedCrossRef
97.
Zurück zum Zitat Emeriaud G, Larouche A, Ducharme-Crevier L, Massicotte E, Flechelles O, Pellerin- Leblanc AA, Morneau S, Beck J, Jouvet P (2014) Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med 40:1718–1726PubMedCrossRef Emeriaud G, Larouche A, Ducharme-Crevier L, Massicotte E, Flechelles O, Pellerin- Leblanc AA, Morneau S, Beck J, Jouvet P (2014) Evolution of inspiratory diaphragm activity in children over the course of the PICU stay. Intensive Care Med 40:1718–1726PubMedCrossRef
98.
Zurück zum Zitat Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116PubMedCrossRef Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–1116PubMedCrossRef
99.
Zurück zum Zitat Wilsterman ME, de Jager P, Blokpoel R, Frerichs I, Dijkstra SK, Albers MJ, Burgerhof JG, Markhorst DG, Kneyber MC (2016) Short-term effects of neuromuscular blockade on global and regional lung mechanics, oxygenation and ventilation in pediatric acute hypoxemic respiratory failure. Ann Intensive Care 6:103PubMedPubMedCentralCrossRef Wilsterman ME, de Jager P, Blokpoel R, Frerichs I, Dijkstra SK, Albers MJ, Burgerhof JG, Markhorst DG, Kneyber MC (2016) Short-term effects of neuromuscular blockade on global and regional lung mechanics, oxygenation and ventilation in pediatric acute hypoxemic respiratory failure. Ann Intensive Care 6:103PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, Wilkins B (2007) Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med 8:317–323PubMed Erickson S, Schibler A, Numa A, Nuthall G, Yung M, Pascoe E, Wilkins B (2007) Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med 8:317–323PubMed
101.
Zurück zum Zitat Khemani RG, Conti D, Alonzo TA, Bart RD III, Newth CJ (2009) Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med 35:1428–1437PubMedCrossRef Khemani RG, Conti D, Alonzo TA, Bart RD III, Newth CJ (2009) Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med 35:1428–1437PubMedCrossRef
102.
Zurück zum Zitat Flori HR, Glidden DV, Rutherford GW, Matthay MA (2005) Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med 171:995–1001PubMedCrossRef Flori HR, Glidden DV, Rutherford GW, Matthay MA (2005) Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med 171:995–1001PubMedCrossRef
103.
Zurück zum Zitat Panico FF, Troster EJ, Oliveira CS, Faria A, Lucena M, Joao PR, Saad ED, Foronda FA, Delgado AF, de Carvalho WB (2015) Risk factors for mortality and outcomes in pediatric acute lung injury/acute respiratory distress syndrome. Pediatr Crit Care Med 16:e194–e200PubMedCrossRef Panico FF, Troster EJ, Oliveira CS, Faria A, Lucena M, Joao PR, Saad ED, Foronda FA, Delgado AF, de Carvalho WB (2015) Risk factors for mortality and outcomes in pediatric acute lung injury/acute respiratory distress syndrome. Pediatr Crit Care Med 16:e194–e200PubMedCrossRef
104.
Zurück zum Zitat Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRef Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L (2008) Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 178:346–355PubMedCrossRef
105.
Zurück zum Zitat Chiumello D, Chidini G, Calderini E, Colombo A, Crimella F, Brioni M (2016) Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome. Ann Intensive care 6:11PubMedPubMedCentralCrossRef Chiumello D, Chidini G, Calderini E, Colombo A, Crimella F, Brioni M (2016) Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome. Ann Intensive care 6:11PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Rimensberger PC, Cheifetz IM, Pediatric Acute Lung Injury Consensus Conference G (2015) Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 16:S51–S60PubMedCrossRef Rimensberger PC, Cheifetz IM, Pediatric Acute Lung Injury Consensus Conference G (2015) Ventilatory support in children with pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 16:S51–S60PubMedCrossRef
107.
Zurück zum Zitat Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755PubMedCrossRef Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755PubMedCrossRef
108.
Zurück zum Zitat de Jager P, Burgerhof JG, van Heerde M, Albers MJ, Markhorst DG, Kneyber MC (2014) Tidal volume and mortality in mechanically ventilated children: a systematic review and meta-analysis of observational studies. Crit Care Med 42:2461–2472PubMedCrossRef de Jager P, Burgerhof JG, van Heerde M, Albers MJ, Markhorst DG, Kneyber MC (2014) Tidal volume and mortality in mechanically ventilated children: a systematic review and meta-analysis of observational studies. Crit Care Med 42:2461–2472PubMedCrossRef
109.
Zurück zum Zitat Kneyber MC, Rimensberger PC (2012) The need for and feasibility of a pediatric ventilation trial: reflections on a survey among pediatric intensivists. Pediatr Crit Care Med 13:632–638PubMedCrossRef Kneyber MC, Rimensberger PC (2012) The need for and feasibility of a pediatric ventilation trial: reflections on a survey among pediatric intensivists. Pediatr Crit Care Med 13:632–638PubMedCrossRef
110.
Zurück zum Zitat Yu WL, Lu ZJ, Wang Y, Shi LP, Kuang FW, Qian SY, Zeng QY, Xie MH, Zhang GY, Zhuang DY, Fan XM, Sun B, Collaborative Study Group of Pediatric Respiratory F (2009) The epidemiology of acute respiratory distress syndrome in pediatric intensive care units in China. Intensive Care Med 35:136–143PubMedCrossRef Yu WL, Lu ZJ, Wang Y, Shi LP, Kuang FW, Qian SY, Zeng QY, Xie MH, Zhang GY, Zhuang DY, Fan XM, Sun B, Collaborative Study Group of Pediatric Respiratory F (2009) The epidemiology of acute respiratory distress syndrome in pediatric intensive care units in China. Intensive Care Med 35:136–143PubMedCrossRef
111.
Zurück zum Zitat Zhu YF, Xu F, Lu XL, Wang Y, Chen JL, Chao JX, Zhou XW, Zhang JH, Huang YZ, Yu WL, Xie MH, Yan CY, Lu ZJ, Sun B, Chinese Collaborative Study Group for Pediatric Hypoxemic Respiratory F (2012) Mortality and morbidity of acute hypoxemic respiratory failure and acute respiratory distress syndrome in infants and young children. Chin Med J 125:2265–2271PubMed Zhu YF, Xu F, Lu XL, Wang Y, Chen JL, Chao JX, Zhou XW, Zhang JH, Huang YZ, Yu WL, Xie MH, Yan CY, Lu ZJ, Sun B, Chinese Collaborative Study Group for Pediatric Hypoxemic Respiratory F (2012) Mortality and morbidity of acute hypoxemic respiratory failure and acute respiratory distress syndrome in infants and young children. Chin Med J 125:2265–2271PubMed
112.
Zurück zum Zitat Albuali WH, Singh RN, Fraser DD, Seabrook JA, Kavanagh BP, Parshuram CS, Komecki A (2007) Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med 8:324–330PubMed Albuali WH, Singh RN, Fraser DD, Seabrook JA, Kavanagh BP, Parshuram CS, Komecki A (2007) Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med 8:324–330PubMed
113.
Zurück zum Zitat Pulitano S, Mancino A, Pietrini D, Piastra M, De Rosa S, Tosi F, De Luca D, Conti G (2013) Effects of positive end expiratory pressure (PEEP) on intracranial and cerebral perfusion pressure in pediatric neurosurgical patients. J Neurosurg Anesthesiol 25:330–334PubMedCrossRef Pulitano S, Mancino A, Pietrini D, Piastra M, De Rosa S, Tosi F, De Luca D, Conti G (2013) Effects of positive end expiratory pressure (PEEP) on intracranial and cerebral perfusion pressure in pediatric neurosurgical patients. J Neurosurg Anesthesiol 25:330–334PubMedCrossRef
114.
Zurück zum Zitat von Ungern-Sternberg BS, Regli A, Schibler A, Hammer J, Frei FJ, Erb TO (2007) The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg 104:1364–1368CrossRef von Ungern-Sternberg BS, Regli A, Schibler A, Hammer J, Frei FJ, Erb TO (2007) The impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg 104:1364–1368CrossRef
115.
Zurück zum Zitat Tusman G, Bohm SH, Tempra A, Melkun F, Garcia E, Turchetto E, Mulder PG, Lachmann B (2003) Effects of recruitment maneuver on atelectasis in anesthetized children. Anesthesiology 98:14–22PubMedCrossRef Tusman G, Bohm SH, Tempra A, Melkun F, Garcia E, Turchetto E, Mulder PG, Lachmann B (2003) Effects of recruitment maneuver on atelectasis in anesthetized children. Anesthesiology 98:14–22PubMedCrossRef
116.
Zurück zum Zitat Russell RI, Greenough A, Giffin F (1993) The effect of variations in positive end expiratory pressure on gas exchange in ventilated children with liver disease. Eur J Pediatr 152:742–744PubMedCrossRef Russell RI, Greenough A, Giffin F (1993) The effect of variations in positive end expiratory pressure on gas exchange in ventilated children with liver disease. Eur J Pediatr 152:742–744PubMedCrossRef
117.
Zurück zum Zitat Giffin F, Greenough A (1994) Effect of positive end expiratory pressure and mean airway pressure on respiratory compliance and gas exchange in children with liver disease. Eur J Pediatr 153:28–33PubMedCrossRef Giffin F, Greenough A (1994) Effect of positive end expiratory pressure and mean airway pressure on respiratory compliance and gas exchange in children with liver disease. Eur J Pediatr 153:28–33PubMedCrossRef
118.
Zurück zum Zitat Ingaramo OA, Ngo T, Khemani RG, Newth CJ (2014) Impact of positive end- expiratory pressure on cardiac index measured by ultrasound cardiac output monitor. Pediatr Crit Care Med 15:15–20PubMedCrossRef Ingaramo OA, Ngo T, Khemani RG, Newth CJ (2014) Impact of positive end- expiratory pressure on cardiac index measured by ultrasound cardiac output monitor. Pediatr Crit Care Med 15:15–20PubMedCrossRef
119.
120.
Zurück zum Zitat Paulson TE, Spear RM, Silva PD, Peterson BM (1996) High-frequency pressure- control ventilation with high positive end-expiratory pressure in children with acute respiratory distress syndrome. J Pediatr 129:566–573PubMedCrossRef Paulson TE, Spear RM, Silva PD, Peterson BM (1996) High-frequency pressure- control ventilation with high positive end-expiratory pressure in children with acute respiratory distress syndrome. J Pediatr 129:566–573PubMedCrossRef
121.
Zurück zum Zitat Sivan Y, Deakers TW, Newth CJ (1991) Effect of positive end-expiratory pressure on respiratory compliance in children with acute respiratory failure. Pediatr Pulmonol 11:103–107PubMedCrossRef Sivan Y, Deakers TW, Newth CJ (1991) Effect of positive end-expiratory pressure on respiratory compliance in children with acute respiratory failure. Pediatr Pulmonol 11:103–107PubMedCrossRef
122.
Zurück zum Zitat White MK, Galli SA, Chatburn RL, Blumer JL (1988) Optimal positive end-expiratory pressure therapy in infants and children with acute respiratory failure. Pediatr Res 24:217–221PubMedCrossRef White MK, Galli SA, Chatburn RL, Blumer JL (1988) Optimal positive end-expiratory pressure therapy in infants and children with acute respiratory failure. Pediatr Res 24:217–221PubMedCrossRef
123.
Zurück zum Zitat Graham AS, Chandrashekharaiah G, Citak A, Wetzel RC, Newth CJ (2007) Positive end-expiratory pressure and pressure support in peripheral airways obstruction: work of breathing in intubated children. Intensive Care Med 33:120–127PubMedCrossRef Graham AS, Chandrashekharaiah G, Citak A, Wetzel RC, Newth CJ (2007) Positive end-expiratory pressure and pressure support in peripheral airways obstruction: work of breathing in intubated children. Intensive Care Med 33:120–127PubMedCrossRef
124.
Zurück zum Zitat Parrilla FJ, Moran I, Roche-Campo F, Mancebo J (2014) Ventilatory strategies in obstructive lung disease. Semin Resp Crit Care Med 35:431–440CrossRef Parrilla FJ, Moran I, Roche-Campo F, Mancebo J (2014) Ventilatory strategies in obstructive lung disease. Semin Resp Crit Care Med 35:431–440CrossRef
125.
Zurück zum Zitat Caramez MP, Borges JB, Tucci MR, Okamoto VN, Carvalho CR, Kacmarek RM, Malhotra A, Velasco IT, Amato MB (2005) Paradoxical responses to positive end- expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med 33:1519–1528PubMedPubMedCentralCrossRef Caramez MP, Borges JB, Tucci MR, Okamoto VN, Carvalho CR, Kacmarek RM, Malhotra A, Velasco IT, Amato MB (2005) Paradoxical responses to positive end- expiratory pressure in patients with airway obstruction during controlled ventilation. Crit Care Med 33:1519–1528PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Davis S, Jones M, Kisling J, Angelicchio C, Tepper RS (1998) Effect of continuous positive airway pressure on forced expiratory flows in infants with tracheomalacia. Am J Respir Crit Care Med 158:148–152PubMedCrossRef Davis S, Jones M, Kisling J, Angelicchio C, Tepper RS (1998) Effect of continuous positive airway pressure on forced expiratory flows in infants with tracheomalacia. Am J Respir Crit Care Med 158:148–152PubMedCrossRef
128.
Zurück zum Zitat Essouri S, Nicot F, Clement A, Garabedian EN, Roger G, Lofaso F, Fauroux B (2005) Noninvasive positive pressure ventilation in infants with upper airway obstruction: comparison of continuous and bilevel positive pressure. Intensive Care Med 31:574–580PubMedCrossRef Essouri S, Nicot F, Clement A, Garabedian EN, Roger G, Lofaso F, Fauroux B (2005) Noninvasive positive pressure ventilation in infants with upper airway obstruction: comparison of continuous and bilevel positive pressure. Intensive Care Med 31:574–580PubMedCrossRef
129.
Zurück zum Zitat Halbertsma FJ, Vaneker M, van der Hoeven JG (2007) Use of recruitment maneuvers during mechanical ventilation in pediatric and neonatal intensive care units in the Netherlands. Intensive Care Med 33:1673–1674PubMedCrossRef Halbertsma FJ, Vaneker M, van der Hoeven JG (2007) Use of recruitment maneuvers during mechanical ventilation in pediatric and neonatal intensive care units in the Netherlands. Intensive Care Med 33:1673–1674PubMedCrossRef
130.
Zurück zum Zitat Halbertsma FJ, van der Hoeven JG (2005) Lung recruitment during mechanical positive pressure ventilation in the PICU: what can be learned from the literature? Anaesthesia 60:779–790PubMedCrossRef Halbertsma FJ, van der Hoeven JG (2005) Lung recruitment during mechanical positive pressure ventilation in the PICU: what can be learned from the literature? Anaesthesia 60:779–790PubMedCrossRef
131.
Zurück zum Zitat Cruces P, Donoso A, Valenzuela J, Diaz F (2013) Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study. Pediatr Pulmonol 48:1135–1143PubMedCrossRef Cruces P, Donoso A, Valenzuela J, Diaz F (2013) Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study. Pediatr Pulmonol 48:1135–1143PubMedCrossRef
132.
Zurück zum Zitat Scohy TV, Bikker IG, Hofland J, de Jong PL, Bogers AJ, Gommers D (2009) Alveolar recruitment strategy and PEEP improve oxygenation, dynamic compliance of respiratory system and end-expiratory lung volume in pediatric patients undergoing cardiac surgery for congenital heart disease. Paediatr Anaesth 19:1207–1212PubMedCrossRef Scohy TV, Bikker IG, Hofland J, de Jong PL, Bogers AJ, Gommers D (2009) Alveolar recruitment strategy and PEEP improve oxygenation, dynamic compliance of respiratory system and end-expiratory lung volume in pediatric patients undergoing cardiac surgery for congenital heart disease. Paediatr Anaesth 19:1207–1212PubMedCrossRef
133.
Zurück zum Zitat Boriosi JP, Sapru A, Hanson JH, Asselin J, Gildengorin G, Newman V, Sabato K, Flori HR (2011) Efficacy and safety of lung recruitment in pediatric patients with acute lung injury. Pediatr Crit Care Med 12:431–436PubMedPubMedCentralCrossRef Boriosi JP, Sapru A, Hanson JH, Asselin J, Gildengorin G, Newman V, Sabato K, Flori HR (2011) Efficacy and safety of lung recruitment in pediatric patients with acute lung injury. Pediatr Crit Care Med 12:431–436PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Kheir JN, Walsh BK, Smallwood CD, Rettig JS, Thompson JE, Gomez-Laberge C, Wolf GK, Arnold JH (2013) Comparison of 2 lung recruitment strategies in children with acute lung injury. Respir Care 58:1280–1290PubMedCrossRef Kheir JN, Walsh BK, Smallwood CD, Rettig JS, Thompson JE, Gomez-Laberge C, Wolf GK, Arnold JH (2013) Comparison of 2 lung recruitment strategies in children with acute lung injury. Respir Care 58:1280–1290PubMedCrossRef
135.
Zurück zum Zitat Wolf GK, Gomez-Laberge C, Kheir JN, Zurakowski D, Walsh BK, Adler A, Arnold JH (2012) Reversal of dependent lung collapse predicts response to lung recruitment in children with early acute lung injury. Pediatr Crit Care Med 13:509–515PubMedCrossRef Wolf GK, Gomez-Laberge C, Kheir JN, Zurakowski D, Walsh BK, Adler A, Arnold JH (2012) Reversal of dependent lung collapse predicts response to lung recruitment in children with early acute lung injury. Pediatr Crit Care Med 13:509–515PubMedCrossRef
136.
Zurück zum Zitat Boriosi JP, Cohen RA, Summers E, Sapru A, Hanson JH, Gildengorin G, Newman V, Flori HR (2012) Lung aeration changes after lung recruitment in children with acute lung injury: a feasibility study. Pediatr Pulmonol 47:771–779PubMedPubMedCentralCrossRef Boriosi JP, Cohen RA, Summers E, Sapru A, Hanson JH, Gildengorin G, Newman V, Flori HR (2012) Lung aeration changes after lung recruitment in children with acute lung injury: a feasibility study. Pediatr Pulmonol 47:771–779PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Kaditis AG, Motoyama EK, Zin W, Maekawa N, Nishio I, Imai T, Milic-Emili J (2008) The effect of lung expansion and positive end-expiratory pressure on respiratory mechanics in anesthetized children. Anesth Analg 106:775–785PubMedCrossRef Kaditis AG, Motoyama EK, Zin W, Maekawa N, Nishio I, Imai T, Milic-Emili J (2008) The effect of lung expansion and positive end-expiratory pressure on respiratory mechanics in anesthetized children. Anesth Analg 106:775–785PubMedCrossRef
138.
Zurück zum Zitat Duff JP, Rosychuk RJ, Joffe AR (2007) The safety and efficacy of sustained inflations as a lung recruitment maneuver in pediatric intensive care unit patients. Intensive Care Med 33:1778–1786PubMedCrossRef Duff JP, Rosychuk RJ, Joffe AR (2007) The safety and efficacy of sustained inflations as a lung recruitment maneuver in pediatric intensive care unit patients. Intensive Care Med 33:1778–1786PubMedCrossRef
139.
Zurück zum Zitat Nacoti M, Spagnolli E, Bonanomi E, Barbanti C, Cereda M, Fumagalli R (2012) Sigh improves gas exchange and respiratory mechanics in children undergoing pressure support after major surgery. Minerva Anesthesiol 78:920–929 Nacoti M, Spagnolli E, Bonanomi E, Barbanti C, Cereda M, Fumagalli R (2012) Sigh improves gas exchange and respiratory mechanics in children undergoing pressure support after major surgery. Minerva Anesthesiol 78:920–929
140.
Zurück zum Zitat Morrow B, Futter M, Argent A (2007) A recruitment manoeuvre performed after endotracheal suction does not increase dynamic compliance in ventilated paediatric patients: a randomised controlled trial. Aust J Physiother 53:163–169PubMedCrossRef Morrow B, Futter M, Argent A (2007) A recruitment manoeuvre performed after endotracheal suction does not increase dynamic compliance in ventilated paediatric patients: a randomised controlled trial. Aust J Physiother 53:163–169PubMedCrossRef
141.
Zurück zum Zitat Gregory GA (1994) Pediatric anesthesia. Churchill Livingstone, New York Gregory GA (1994) Pediatric anesthesia. Churchill Livingstone, New York
142.
Zurück zum Zitat Mau MK, Yamasato KS, Yamamoto LG (2005) Normal oxygen saturation values in pediatric patients. Hawaii Med J 64(42):44–45 Mau MK, Yamasato KS, Yamamoto LG (2005) Normal oxygen saturation values in pediatric patients. Hawaii Med J 64(42):44–45
143.
Zurück zum Zitat Vengsarkar AS, Swan HJ (1964) Variations in oxygen saturation of arterial blood in infants and children with congenital heart disease. Am J Cardiol 14:622–627PubMedCrossRef Vengsarkar AS, Swan HJ (1964) Variations in oxygen saturation of arterial blood in infants and children with congenital heart disease. Am J Cardiol 14:622–627PubMedCrossRef
144.
Zurück zum Zitat Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, Hanna BD, Rosenzweig EB, Raj JU, Cornfield D, Stenmark KR, Steinhorn R, Thebaud B, Fineman JR, Kuehne T, Feinstein JA, Friedberg MK, Earing M, Barst RJ, Keller RL, Kinsella JP, Mullen M, Deterding R, Kulik T, Mallory G, Humpl T, Wessel DL, American Heart Association Council on Cardiopulmonary CCP, Resuscitation, Council on Clinical C, Council on Cardiovascular Disease in the Y, Council on Cardiovascular R, Intervention, Council on Cardiovascular S, Anesthesia, the American Thoracic S (2015) pediatric pulmonary hypertension: guidelines From the American Heart Association and American Thoracic Society. Circulation 132:2037–2099PubMedCrossRef Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WK, Hanna BD, Rosenzweig EB, Raj JU, Cornfield D, Stenmark KR, Steinhorn R, Thebaud B, Fineman JR, Kuehne T, Feinstein JA, Friedberg MK, Earing M, Barst RJ, Keller RL, Kinsella JP, Mullen M, Deterding R, Kulik T, Mallory G, Humpl T, Wessel DL, American Heart Association Council on Cardiopulmonary CCP, Resuscitation, Council on Clinical C, Council on Cardiovascular Disease in the Y, Council on Cardiovascular R, Intervention, Council on Cardiovascular S, Anesthesia, the American Thoracic S (2015) pediatric pulmonary hypertension: guidelines From the American Heart Association and American Thoracic Society. Circulation 132:2037–2099PubMedCrossRef
145.
Zurück zum Zitat Jenkinson SG (1993) Oxygen toxicity. N Horiz 1:504–511 Jenkinson SG (1993) Oxygen toxicity. N Horiz 1:504–511
146.
Zurück zum Zitat Pannu SR (2016) Too much oxygen: hyperoxia and oxygen management in mechanically ventilated patients. Sem Respir Crit Care Med 37:16–22CrossRef Pannu SR (2016) Too much oxygen: hyperoxia and oxygen management in mechanically ventilated patients. Sem Respir Crit Care Med 37:16–22CrossRef
147.
Zurück zum Zitat Abdelsalam M, Cheifetz IM (2010) Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care 55:1483–1490PubMed Abdelsalam M, Cheifetz IM (2010) Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care 55:1483–1490PubMed
148.
Zurück zum Zitat Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, Elmer J, Friedman G, Gajic O, Goldstein JN, Linko R, Pinheiro de Oliveira R, Sundar S, Talmor D, Wolthuis EK, Gama de Abreu M, Pelosi P, Schultz MJ, Investigators PRVN (2015) Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med 43:2155–2163PubMedCrossRef Neto AS, Simonis FD, Barbas CS, Biehl M, Determann RM, Elmer J, Friedman G, Gajic O, Goldstein JN, Linko R, Pinheiro de Oliveira R, Sundar S, Talmor D, Wolthuis EK, Gama de Abreu M, Pelosi P, Schultz MJ, Investigators PRVN (2015) Lung-protective ventilation with low tidal volumes and the occurrence of pulmonary complications in patients without acute respiratory distress syndrome: a systematic review and individual patient data analysis. Crit Care Med 43:2155–2163PubMedCrossRef
149.
Zurück zum Zitat Laffey JG, O’Croinin D, McLoughlin P, Kavanagh BP (2004) Permissive hypercapnia–role in protective lung ventilatory strategies. Intensive Care Med 30:347–356PubMedCrossRef Laffey JG, O’Croinin D, McLoughlin P, Kavanagh BP (2004) Permissive hypercapnia–role in protective lung ventilatory strategies. Intensive Care Med 30:347–356PubMedCrossRef
150.
Zurück zum Zitat Goldstein B, Shannon DC, Todres ID (1990) Supercarbia in children: clinical course and outcome. Crit Care Med 18:166–168PubMedCrossRef Goldstein B, Shannon DC, Todres ID (1990) Supercarbia in children: clinical course and outcome. Crit Care Med 18:166–168PubMedCrossRef
151.
Zurück zum Zitat Curley MA, Fackler JC (1998) Weaning from mechanical ventilation: patterns in young children recovering from acute hypoxemic respiratory failure. Am J Crit Care 7:335–345PubMed Curley MA, Fackler JC (1998) Weaning from mechanical ventilation: patterns in young children recovering from acute hypoxemic respiratory failure. Am J Crit Care 7:335–345PubMed
152.
Zurück zum Zitat Newth CJ, Venkataraman S, Willson DF, Meert KL, Harrison R, Dean JM, Pollack M, Zimmerman J, Anand KJ, Carcillo JA, Nicholson CE (2009) Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med 10:1–11PubMedPubMedCentralCrossRef Newth CJ, Venkataraman S, Willson DF, Meert KL, Harrison R, Dean JM, Pollack M, Zimmerman J, Anand KJ, Carcillo JA, Nicholson CE (2009) Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med 10:1–11PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Foronda FK, Troster EJ, Farias JA, Barbas CS, Ferraro AA, Faria LS, Bousso A, Panico FF, Delgado AF (2011) The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med 39:2526–2533PubMedCrossRef Foronda FK, Troster EJ, Farias JA, Barbas CS, Ferraro AA, Faria LS, Bousso A, Panico FF, Delgado AF (2011) The impact of daily evaluation and spontaneous breathing test on the duration of pediatric mechanical ventilation: a randomized controlled trial. Crit Care Med 39:2526–2533PubMedCrossRef
154.
Zurück zum Zitat Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit RG, Meert KL, Luckett PM, Forbes P, Lilley M, Thompson J, Cheifetz IM, Hibberd P, Wetzel R, Cox PN, Arnold JH, Pediatric Acute Lung I, Sepsis Investigators N (2002) Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 288:2561–2568PubMedCrossRef Randolph AG, Wypij D, Venkataraman ST, Hanson JH, Gedeit RG, Meert KL, Luckett PM, Forbes P, Lilley M, Thompson J, Cheifetz IM, Hibberd P, Wetzel R, Cox PN, Arnold JH, Pediatric Acute Lung I, Sepsis Investigators N (2002) Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 288:2561–2568PubMedCrossRef
155.
Zurück zum Zitat Schultz TR, Lin RJ, Watzman HM, Durning SM, Hales R, Woodson A, Francis B, Tyler L, Napoli L, Godinez RI (2001) Weaning children from mechanical ventilation: a prospective randomized trial of protocol-directed versus physician-directed weaning. Respir Care 46:772–782PubMed Schultz TR, Lin RJ, Watzman HM, Durning SM, Hales R, Woodson A, Francis B, Tyler L, Napoli L, Godinez RI (2001) Weaning children from mechanical ventilation: a prospective randomized trial of protocol-directed versus physician-directed weaning. Respir Care 46:772–782PubMed
156.
Zurück zum Zitat Blackwood B, Murray M, Chisakuta A, Cardwell CR, O’Halloran P (2013) Protocolized versus non-protocolized weaning for reducing the duration of invasive mechanical ventilation in critically ill paediatric patients. Cochrane Database Syst Rev: CD009082 Blackwood B, Murray M, Chisakuta A, Cardwell CR, O’Halloran P (2013) Protocolized versus non-protocolized weaning for reducing the duration of invasive mechanical ventilation in critically ill paediatric patients. Cochrane Database Syst Rev: CD009082
157.
Zurück zum Zitat Jouvet P, Eddington A, Payen V, Bordessoule A, Emeriaud G, Gasco RL, Wysocki M (2012) A pilot prospective study on closed loop controlled ventilation and oxygenation in ventilated children during the weaning phase. Crit Care 16:R85PubMedPubMedCentralCrossRef Jouvet P, Eddington A, Payen V, Bordessoule A, Emeriaud G, Gasco RL, Wysocki M (2012) A pilot prospective study on closed loop controlled ventilation and oxygenation in ventilated children during the weaning phase. Crit Care 16:R85PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Jouvet PA, Payen V, Gauvin F, Emeriaud G, Lacroix J (2013) Weaning children from mechanical ventilation with a computer-driven protocol: a pilot trial. Intensive Care Med 39:919–925PubMedCrossRef Jouvet PA, Payen V, Gauvin F, Emeriaud G, Lacroix J (2013) Weaning children from mechanical ventilation with a computer-driven protocol: a pilot trial. Intensive Care Med 39:919–925PubMedCrossRef
159.
Zurück zum Zitat Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B (2015) Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a cochrane systematic review and meta- analysis. Crit Care 19:48PubMedPubMedCentralCrossRef Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B (2015) Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a cochrane systematic review and meta- analysis. Crit Care 19:48PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Jouvet P, Farges C, Hatzakis G, Monir A, Lesage F, Dupic L, Brochard L, Hubert P (2007) Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): a pilot study. Pediatr Crit Care Med 8:425–432PubMedCrossRef Jouvet P, Farges C, Hatzakis G, Monir A, Lesage F, Dupic L, Brochard L, Hubert P (2007) Weaning children from mechanical ventilation with a computer-driven system (closed-loop protocol): a pilot study. Pediatr Crit Care Med 8:425–432PubMedCrossRef
161.
Zurück zum Zitat Rushforth K (2005) A randomised controlled trial of weaning from mechanical ventilation in paediatric intensive care (PIC). Methodological and practical issues. Intensive Crit Care Nurs 21:76–86PubMedCrossRef Rushforth K (2005) A randomised controlled trial of weaning from mechanical ventilation in paediatric intensive care (PIC). Methodological and practical issues. Intensive Crit Care Nurs 21:76–86PubMedCrossRef
162.
Zurück zum Zitat Suominen PK, Tuominen NA, Salminen JT, Korpela RE, Klockars JG, Taivainen TR, Meretoja OA (2007) The air-leak test is not a good predictor of postextubation adverse events in children undergoing cardiac surgery. J Ccardiothorac Vasc Anesthesia 21:197–202CrossRef Suominen PK, Tuominen NA, Salminen JT, Korpela RE, Klockars JG, Taivainen TR, Meretoja OA (2007) The air-leak test is not a good predictor of postextubation adverse events in children undergoing cardiac surgery. J Ccardiothorac Vasc Anesthesia 21:197–202CrossRef
163.
Zurück zum Zitat Takeuchi M, Imanaka H, Miyano H, Kumon K, Nishimura M (2000) Effect of patient-triggered ventilation on respiratory workload in infants after cardiac surgery. Anesthesiology 93:1238–1244 (discussion 1235A) PubMedCrossRef Takeuchi M, Imanaka H, Miyano H, Kumon K, Nishimura M (2000) Effect of patient-triggered ventilation on respiratory workload in infants after cardiac surgery. Anesthesiology 93:1238–1244 (discussion 1235A) PubMedCrossRef
164.
Zurück zum Zitat Wolf GK, Walsh BK, Green ML, Arnold JH (2011) Electrical activity of the diaphragm during extubation readiness testing in critically ill children. Pediatr Crit Care Med 12:e220–e224PubMedCrossRef Wolf GK, Walsh BK, Green ML, Arnold JH (2011) Electrical activity of the diaphragm during extubation readiness testing in critically ill children. Pediatr Crit Care Med 12:e220–e224PubMedCrossRef
165.
Zurück zum Zitat Withington DE, Davis GM, Vallinis P, Del Sonno P, Bevan JC (1998) Respiratory function in children during recovery from neuromuscular blockade. Paediatr Anaesth 8:41–47PubMedCrossRef Withington DE, Davis GM, Vallinis P, Del Sonno P, Bevan JC (1998) Respiratory function in children during recovery from neuromuscular blockade. Paediatr Anaesth 8:41–47PubMedCrossRef
166.
Zurück zum Zitat Harikumar G, Egberongbe Y, Nadel S, Wheatley E, Moxham J, Greenough A, Rafferty GF (2009) Tension-time index as a predictor of extubation outcome in ventilated children. Am J Respir Crit Care Med 180:982–988PubMedPubMedCentralCrossRef Harikumar G, Egberongbe Y, Nadel S, Wheatley E, Moxham J, Greenough A, Rafferty GF (2009) Tension-time index as a predictor of extubation outcome in ventilated children. Am J Respir Crit Care Med 180:982–988PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Mohr AM, Rutherford EJ, Cairns BA, Boysen PG (2001) The role of dead space ventilation in predicting outcome of successful weaning from mechanical ventilation. J Trauma 51:843–848PubMedCrossRef Mohr AM, Rutherford EJ, Cairns BA, Boysen PG (2001) The role of dead space ventilation in predicting outcome of successful weaning from mechanical ventilation. J Trauma 51:843–848PubMedCrossRef
168.
Zurück zum Zitat Noizet O, Leclerc F, Sadik A, Grandbastien B, Riou Y, Dorkenoo A, Fourier C, Cremer R, Leteurtre S (2005) Does taking endurance into account improve the prediction of weaning outcome in mechanically ventilated children? Crit Care 9:R798–R807PubMedPubMedCentralCrossRef Noizet O, Leclerc F, Sadik A, Grandbastien B, Riou Y, Dorkenoo A, Fourier C, Cremer R, Leteurtre S (2005) Does taking endurance into account improve the prediction of weaning outcome in mechanically ventilated children? Crit Care 9:R798–R807PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Farias JA, Alia I, Esteban A, Golubicki AN, Olazarri FA (1998) Weaning from mechanical ventilation in pediatric intensive care patients. Intensive Care Med 24:1070–1075PubMedCrossRef Farias JA, Alia I, Esteban A, Golubicki AN, Olazarri FA (1998) Weaning from mechanical ventilation in pediatric intensive care patients. Intensive Care Med 24:1070–1075PubMedCrossRef
170.
Zurück zum Zitat Gaies M, Tabbutt S, Schwartz SM, Bird GL, Alten JA, Shekerdemian LS, Klugman D, Thiagarajan RR, Gaynor JW, Jacobs JP, Nicolson SC, Donohue JE, Yu S, Pasquali SK, Cooper DS (2015) Clinical epidemiology of extubation failure in the pediatric cardiac ICU: a report from the Pediatric Cardiac Critical Care Consortium. Pediatr Crit Care Med 16:837–845PubMedPubMedCentralCrossRef Gaies M, Tabbutt S, Schwartz SM, Bird GL, Alten JA, Shekerdemian LS, Klugman D, Thiagarajan RR, Gaynor JW, Jacobs JP, Nicolson SC, Donohue JE, Yu S, Pasquali SK, Cooper DS (2015) Clinical epidemiology of extubation failure in the pediatric cardiac ICU: a report from the Pediatric Cardiac Critical Care Consortium. Pediatr Crit Care Med 16:837–845PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Willis BC, Graham AS, Yoon E, Wetzel RC, Newth CJ (2005) Pressure-rate products and phase angles in children on minimal support ventilation and after extubation. Intensive Care Med 31:1700–1705PubMedCrossRef Willis BC, Graham AS, Yoon E, Wetzel RC, Newth CJ (2005) Pressure-rate products and phase angles in children on minimal support ventilation and after extubation. Intensive Care Med 31:1700–1705PubMedCrossRef
172.
Zurück zum Zitat Wratney AT, Benjamin DK Jr, Slonim AD, He J, Hamel DS, Cheifetz IM (2008) The endotracheal tube air leak test does not predict extubation outcome in critically ill pediatric patients. Pediatr Crit Care Med 9:490–496PubMedPubMedCentralCrossRef Wratney AT, Benjamin DK Jr, Slonim AD, He J, Hamel DS, Cheifetz IM (2008) The endotracheal tube air leak test does not predict extubation outcome in critically ill pediatric patients. Pediatr Crit Care Med 9:490–496PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Randolph AG, Forbes PW, Gedeit RG, Arnold JH, Wetzel RC, Luckett PM, O’Neil ME, Venkataraman ST, Meert KL, Cheifetz IM, Cox PN, Hanson JH, Pediatric Acute Lung I, Sepsis Investigators N (2005) Cumulative fluid intake minus output is not associated with ventilator weaning duration or extubation outcomes in children. Pediatr Crit Care Med 6:642–647PubMedCrossRef Randolph AG, Forbes PW, Gedeit RG, Arnold JH, Wetzel RC, Luckett PM, O’Neil ME, Venkataraman ST, Meert KL, Cheifetz IM, Cox PN, Hanson JH, Pediatric Acute Lung I, Sepsis Investigators N (2005) Cumulative fluid intake minus output is not associated with ventilator weaning duration or extubation outcomes in children. Pediatr Crit Care Med 6:642–647PubMedCrossRef
174.
Zurück zum Zitat Tobin MJ (2012) Extubation and the myth of “minimal ventilator settings”. Am J Respir Crit Care Med 185:349–350PubMedCrossRef Tobin MJ (2012) Extubation and the myth of “minimal ventilator settings”. Am J Respir Crit Care Med 185:349–350PubMedCrossRef
175.
Zurück zum Zitat Manczur T, Greenough A, Nicholson GP, Rafferty GF (2000) Resistance of pediatric and neonatal endotracheal tubes: influence of flow rate, size, and shape. Crit Care Med 28:1595–1598PubMedCrossRef Manczur T, Greenough A, Nicholson GP, Rafferty GF (2000) Resistance of pediatric and neonatal endotracheal tubes: influence of flow rate, size, and shape. Crit Care Med 28:1595–1598PubMedCrossRef
176.
Zurück zum Zitat Khemani RG, Hotz J, Morzov R, Flink RC, Kamerkar A, LaFortune M, Rafferty GF, Ross PA, Newth CJ (2016) Pediatric extubation readiness tests should not use pressure support. Intensive Care Med 42:1214–1222PubMedCrossRef Khemani RG, Hotz J, Morzov R, Flink RC, Kamerkar A, LaFortune M, Rafferty GF, Ross PA, Newth CJ (2016) Pediatric extubation readiness tests should not use pressure support. Intensive Care Med 42:1214–1222PubMedCrossRef
177.
Zurück zum Zitat Vianello A, Arcaro G, Braccioni F, Gallan F, Marchi MR, Chizio S, Zampieri D, Pegoraro E, Salvador V (2011) Prevention of extubation failure in high-risk patients with neuromuscular disease. J Crit Care 26:517–524PubMedCrossRef Vianello A, Arcaro G, Braccioni F, Gallan F, Marchi MR, Chizio S, Zampieri D, Pegoraro E, Salvador V (2011) Prevention of extubation failure in high-risk patients with neuromuscular disease. J Crit Care 26:517–524PubMedCrossRef
178.
Zurück zum Zitat Bach JR, Goncalves MR, Hamdani I, Winck JC (2010) Extubation of patients with neuromuscular weakness: a new management paradigm. Chest 137:1033–1039PubMedCrossRef Bach JR, Goncalves MR, Hamdani I, Winck JC (2010) Extubation of patients with neuromuscular weakness: a new management paradigm. Chest 137:1033–1039PubMedCrossRef
179.
Zurück zum Zitat Hull J, Aniapravan R, Chan E, Chatwin M, Forton J, Gallagher J, Gibson N, Gordon J, Hughes I, McCulloch R, Russell RR, Simonds A (2012) British Thoracic Society guideline for respiratory management of children with neuromuscular weakness. Thorax 67(Suppl 1):i1–i40PubMedCrossRef Hull J, Aniapravan R, Chan E, Chatwin M, Forton J, Gallagher J, Gibson N, Gordon J, Hughes I, McCulloch R, Russell RR, Simonds A (2012) British Thoracic Society guideline for respiratory management of children with neuromuscular weakness. Thorax 67(Suppl 1):i1–i40PubMedCrossRef
180.
Zurück zum Zitat Racca F, Mongini T, Wolfler A, Vianello A, Cutrera R, Del Sorbo L, Capello EC, Gregoretti C, Massa R, De Luca D, Conti G, Tegazzin V, Toscano A, Ranieri VM (2013) Recommendations for anesthesia and perioperative management of patients with neuromuscular disorders. Minerva Anestesiol 79:419–433PubMed Racca F, Mongini T, Wolfler A, Vianello A, Cutrera R, Del Sorbo L, Capello EC, Gregoretti C, Massa R, De Luca D, Conti G, Tegazzin V, Toscano A, Ranieri VM (2013) Recommendations for anesthesia and perioperative management of patients with neuromuscular disorders. Minerva Anestesiol 79:419–433PubMed
181.
Zurück zum Zitat Bissonnette B, Sessler DI, LaFlamme P (1989) Passive and active inspired gas humidification in infants and children. Anesthesiology 71:350–354PubMedCrossRef Bissonnette B, Sessler DI, LaFlamme P (1989) Passive and active inspired gas humidification in infants and children. Anesthesiology 71:350–354PubMedCrossRef
182.
Zurück zum Zitat Bissonnette B, Sessler DI (1989) Passive or active inspired gas humidification increases thermal steady-state temperatures in anesthetized infants. Anesth Analg 69:783–787PubMed Bissonnette B, Sessler DI (1989) Passive or active inspired gas humidification increases thermal steady-state temperatures in anesthetized infants. Anesth Analg 69:783–787PubMed
183.
Zurück zum Zitat Kelly M, Gillies D, Todd DA, Lockwood C (2010) Heated humidification versus heat and moisture exchangers for ventilated adults and children. Cochrane Database Syst Rev: CD004711 Kelly M, Gillies D, Todd DA, Lockwood C (2010) Heated humidification versus heat and moisture exchangers for ventilated adults and children. Cochrane Database Syst Rev: CD004711
184.
Zurück zum Zitat Lellouche F, Taille S, Lefrancois F, Deye N, Maggiore SM, Jouvet P, Ricard JD, Fumagalli B, Brochard L, Groupe de travail sur les Respirateurs de l A-H (2009) Humidification performance of 48 passive airway humidifiers: comparison with manufacturer data. Chest 135:276–286PubMedCrossRef Lellouche F, Taille S, Lefrancois F, Deye N, Maggiore SM, Jouvet P, Ricard JD, Fumagalli B, Brochard L, Groupe de travail sur les Respirateurs de l A-H (2009) Humidification performance of 48 passive airway humidifiers: comparison with manufacturer data. Chest 135:276–286PubMedCrossRef
185.
Zurück zum Zitat Morrow B, Futter M, Argent A (2006) Effect of endotracheal suction on lung dynamics in mechanically-ventilated paediatric patients. Aust J Physiother 52:121–126PubMedCrossRef Morrow B, Futter M, Argent A (2006) Effect of endotracheal suction on lung dynamics in mechanically-ventilated paediatric patients. Aust J Physiother 52:121–126PubMedCrossRef
186.
Zurück zum Zitat Avena MJ, de Carvalho WB, Beppu OS (2003) Evaluation of oxygenation, ventilation and respiratory mechanics before and after endotracheal suction in mechanically ventilated children. Rev Assoc Med Bras 49:156–161PubMedCrossRef Avena MJ, de Carvalho WB, Beppu OS (2003) Evaluation of oxygenation, ventilation and respiratory mechanics before and after endotracheal suction in mechanically ventilated children. Rev Assoc Med Bras 49:156–161PubMedCrossRef
187.
Zurück zum Zitat Choong K, Chatrkaw P, Frndova H, Cox PN (2003) Comparison of loss in lung volume with open versus in-line catheter endotracheal suctioning. Pediatr Crit Care Med 4:69–73PubMedCrossRef Choong K, Chatrkaw P, Frndova H, Cox PN (2003) Comparison of loss in lung volume with open versus in-line catheter endotracheal suctioning. Pediatr Crit Care Med 4:69–73PubMedCrossRef
188.
Zurück zum Zitat Copnell B, Fergusson D (1995) Endotracheal suctioning: time-worn ritual or timely intervention? Am J Crit Care 4:100–105PubMed Copnell B, Fergusson D (1995) Endotracheal suctioning: time-worn ritual or timely intervention? Am J Crit Care 4:100–105PubMed
189.
Zurück zum Zitat Gilbert M (1999) Assessing the need for endotracheal suction. Paediatr Nurs 11:14–17PubMed Gilbert M (1999) Assessing the need for endotracheal suction. Paediatr Nurs 11:14–17PubMed
190.
Zurück zum Zitat Krause MF, Hoehn T (2000) Chest physiotherapy in mechanically ventilated children: a review. Crit Care Med 28:1648–1651PubMedCrossRef Krause MF, Hoehn T (2000) Chest physiotherapy in mechanically ventilated children: a review. Crit Care Med 28:1648–1651PubMedCrossRef
191.
Zurück zum Zitat Hawkins E, Jones A (2015) What is the role of the physiotherapist in paediatric intensive care units? A systematic review of the evidence for respiratory and rehabilitation interventions for mechanically ventilated patients. Physiotherapy 101:303–309PubMedCrossRef Hawkins E, Jones A (2015) What is the role of the physiotherapist in paediatric intensive care units? A systematic review of the evidence for respiratory and rehabilitation interventions for mechanically ventilated patients. Physiotherapy 101:303–309PubMedCrossRef
192.
Zurück zum Zitat Vianello A, Corrado A, Arcaro G, Gallan F, Ori C, Minuzzo M, Bevilacqua M (2005) Mechanical insufflation–exsufflation improves outcomes for neuromuscular disease patients with respiratory tract infections. Am J Phys Med Rehabi 84:83–88 (discussion 89–91) CrossRef Vianello A, Corrado A, Arcaro G, Gallan F, Ori C, Minuzzo M, Bevilacqua M (2005) Mechanical insufflation–exsufflation improves outcomes for neuromuscular disease patients with respiratory tract infections. Am J Phys Med Rehabi 84:83–88 (discussion 89–91) CrossRef
193.
Zurück zum Zitat Miske LJ, Hickey EM, Kolb SM, Weiner DJ, Panitch HB (2004) Use of the mechanical in-exsufflator in pediatric patients with neuromuscular disease and impaired cough. Chest 125:1406–1412PubMedCrossRef Miske LJ, Hickey EM, Kolb SM, Weiner DJ, Panitch HB (2004) Use of the mechanical in-exsufflator in pediatric patients with neuromuscular disease and impaired cough. Chest 125:1406–1412PubMedCrossRef
194.
Zurück zum Zitat Fauroux B, Guillemot N, Aubertin G, Nathan N, Labit A, Clement A, Lofaso F (2008) Physiologic benefits of mechanical insufflation-exsufflation in children with neuromuscular diseases. Chest 133:161–168PubMedCrossRef Fauroux B, Guillemot N, Aubertin G, Nathan N, Labit A, Clement A, Lofaso F (2008) Physiologic benefits of mechanical insufflation-exsufflation in children with neuromuscular diseases. Chest 133:161–168PubMedCrossRef
195.
Zurück zum Zitat Chatwin M, Ross E, Hart N, Nickol AH, Polkey MI, Simonds AK (2003) Cough augmentation with mechanical insufflation/exsufflation in patients with neuromuscular weakness. Eur Respir J 21:502–508PubMedCrossRef Chatwin M, Ross E, Hart N, Nickol AH, Polkey MI, Simonds AK (2003) Cough augmentation with mechanical insufflation/exsufflation in patients with neuromuscular weakness. Eur Respir J 21:502–508PubMedCrossRef
196.
Zurück zum Zitat Racca F, Del Sorbo L, Mongini T, Vianello A, Ranieri VM (2010) Respiratory management of acute respiratory failure in neuromuscular diseases. Minerva Anestesiol 76:51–62PubMed Racca F, Del Sorbo L, Mongini T, Vianello A, Ranieri VM (2010) Respiratory management of acute respiratory failure in neuromuscular diseases. Minerva Anestesiol 76:51–62PubMed
197.
Zurück zum Zitat Newth CJ, Rachman B, Patel N, Hammer J (2004) The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr 144:333–337PubMedCrossRef Newth CJ, Rachman B, Patel N, Hammer J (2004) The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr 144:333–337PubMedCrossRef
198.
Zurück zum Zitat Weiss M, Dullenkopf A, Fischer JE, Keller C, Gerber AC, European Paediatric Endotracheal Intubation Study G (2009) Prospective randomized controlled multi- centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth 103:867–873PubMedCrossRef Weiss M, Dullenkopf A, Fischer JE, Keller C, Gerber AC, European Paediatric Endotracheal Intubation Study G (2009) Prospective randomized controlled multi- centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth 103:867–873PubMedCrossRef
199.
Zurück zum Zitat Rabello L, Conceicao C, Ebecken K, Lisboa T, Bozza FA, Soares M, Povoa P, Salluh JI (2015) Management of severe community-acquired pneumonia in Brazil: a secondary analysis of an international survey. Rev Bras Ter Intensiva 27:57–63PubMedPubMedCentralCrossRef Rabello L, Conceicao C, Ebecken K, Lisboa T, Bozza FA, Soares M, Povoa P, Salluh JI (2015) Management of severe community-acquired pneumonia in Brazil: a secondary analysis of an international survey. Rev Bras Ter Intensiva 27:57–63PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Pearsall MF, Feldman JM (2014) When does apparatus dead space matter for the pediatric patient? Anesth Analg 118:776–780PubMedCrossRef Pearsall MF, Feldman JM (2014) When does apparatus dead space matter for the pediatric patient? Anesth Analg 118:776–780PubMedCrossRef
201.
Zurück zum Zitat Lujan M, Sogo A, Grimau C, Pomares X, Blanch L, Monso E (2015) Influence of dynamic leaks in volume-targeted pressure support noninvasive ventilation: a bench study. Respir Care 60:191–200PubMedCrossRef Lujan M, Sogo A, Grimau C, Pomares X, Blanch L, Monso E (2015) Influence of dynamic leaks in volume-targeted pressure support noninvasive ventilation: a bench study. Respir Care 60:191–200PubMedCrossRef
202.
Zurück zum Zitat Fauroux B, Leroux K, Desmarais G, Isabey D, Clement A, Lofaso F, Louis B (2008) Performance of ventilators for noninvasive positive-pressure ventilation in children. Eur Respir J 31:1300–1307PubMedCrossRef Fauroux B, Leroux K, Desmarais G, Isabey D, Clement A, Lofaso F, Louis B (2008) Performance of ventilators for noninvasive positive-pressure ventilation in children. Eur Respir J 31:1300–1307PubMedCrossRef
203.
Zurück zum Zitat Hussey SG, Ryan CA, Murphy BP (2004) Comparison of three manual ventilation devices using an intubated mannequin. Arch Dis Child Fetal Neonatal Ed 89:F490–F493PubMedPubMedCentralCrossRef Hussey SG, Ryan CA, Murphy BP (2004) Comparison of three manual ventilation devices using an intubated mannequin. Arch Dis Child Fetal Neonatal Ed 89:F490–F493PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Boussaid G, Lofaso F, Santos DB, Vaugier I, Pottier S, Prigent H, Bahrami S, Orlikowski D (2016) Impact of invasive ventilation on survival when non-invasive ventilation is ineffective in patients with Duchenne muscular dystrophy: a prospective cohort. Respir Med 115:26–32PubMedCrossRef Boussaid G, Lofaso F, Santos DB, Vaugier I, Pottier S, Prigent H, Bahrami S, Orlikowski D (2016) Impact of invasive ventilation on survival when non-invasive ventilation is ineffective in patients with Duchenne muscular dystrophy: a prospective cohort. Respir Med 115:26–32PubMedCrossRef
205.
Zurück zum Zitat Rul B, Carnevale F, Estournet B, Rudler M, Herve C (2012) Tracheotomy and children with spinal muscular atrophy type 1: ethical considerations in the French context. Nurs Ethics 19:408–418PubMedCrossRef Rul B, Carnevale F, Estournet B, Rudler M, Herve C (2012) Tracheotomy and children with spinal muscular atrophy type 1: ethical considerations in the French context. Nurs Ethics 19:408–418PubMedCrossRef
206.
Zurück zum Zitat Benson RC, Hardy KA, Gildengorin G, Hsia D (2012) International survey of physician recommendation for tracheostomy for spinal muscular atrophy type I. Pediatr Pulmonol 47:606–611PubMedCrossRef Benson RC, Hardy KA, Gildengorin G, Hsia D (2012) International survey of physician recommendation for tracheostomy for spinal muscular atrophy type I. Pediatr Pulmonol 47:606–611PubMedCrossRef
207.
Zurück zum Zitat Simonds AK (2007) Respiratory support for the severely handicapped child with neuromuscular disease: ethics and practicality. Sem Respir Crit Care Med 28:342–354CrossRef Simonds AK (2007) Respiratory support for the severely handicapped child with neuromuscular disease: ethics and practicality. Sem Respir Crit Care Med 28:342–354CrossRef
208.
Zurück zum Zitat Bush A (2006) Spinal muscular atrophy with respiratory disease (SMARD): an ethical dilemma. Intensive Care Med 32:1691–1693PubMedCrossRef Bush A (2006) Spinal muscular atrophy with respiratory disease (SMARD): an ethical dilemma. Intensive Care Med 32:1691–1693PubMedCrossRef
209.
Zurück zum Zitat Yamaguchi M, Suzuki M (2013) Independent living with Duchenne muscular dystrophy and home mechanical ventilation in areas of Japan with insufficient national welfare services. Int J Qual Stud Health Well-being 8:20914PubMedCrossRef Yamaguchi M, Suzuki M (2013) Independent living with Duchenne muscular dystrophy and home mechanical ventilation in areas of Japan with insufficient national welfare services. Int J Qual Stud Health Well-being 8:20914PubMedCrossRef
210.
Zurück zum Zitat Rimensberger PC, Heulitt MJ, Meliones J, Pons M, Bronicki RA (2011) Mechanical ventilation in the pediatric cardiac intensive care unit: the essentials. World J Pediatr Congenit Heart Surg 2:609–619PubMedCrossRef Rimensberger PC, Heulitt MJ, Meliones J, Pons M, Bronicki RA (2011) Mechanical ventilation in the pediatric cardiac intensive care unit: the essentials. World J Pediatr Congenit Heart Surg 2:609–619PubMedCrossRef
211.
Zurück zum Zitat Bronicki RA, Penny DJ, Anas NG, Fuhrman B (2016) Cardiopulmonary Interactions. Pediatr Crit Care Med 17:S182–S193PubMedCrossRef Bronicki RA, Penny DJ, Anas NG, Fuhrman B (2016) Cardiopulmonary Interactions. Pediatr Crit Care Med 17:S182–S193PubMedCrossRef
213.
Zurück zum Zitat Bronicki RA, Herrera M, Mink RB, Domico M, Tucker D, Chang AC, Anas NG (2010) Hemodynamics and cerebral oxygenation following repair of tetralogy of Fallot: the effects of converting from positive pressure ventilation to spontaneous breathing. Congen Heart Dis 5:416–421CrossRef Bronicki RA, Herrera M, Mink RB, Domico M, Tucker D, Chang AC, Anas NG (2010) Hemodynamics and cerebral oxygenation following repair of tetralogy of Fallot: the effects of converting from positive pressure ventilation to spontaneous breathing. Congen Heart Dis 5:416–421CrossRef
214.
Zurück zum Zitat Jenkins J, Lynn A, Edmonds J, Barker G (1985) Effects of mechanical ventilation on cardiopulmonary function in children after open-heart surgery. Crit Care Med 13:77–80PubMedCrossRef Jenkins J, Lynn A, Edmonds J, Barker G (1985) Effects of mechanical ventilation on cardiopulmonary function in children after open-heart surgery. Crit Care Med 13:77–80PubMedCrossRef
215.
Zurück zum Zitat Gregory GA, Edmunds LH Jr, Kitterman JA, Phibbs RH, Tooley WH (1975) Continuous positive airway pressure and pulmonary and circulatory function after cardiac surgery in infants less than three months of age. Anesthesiology 43:426–431PubMedCrossRef Gregory GA, Edmunds LH Jr, Kitterman JA, Phibbs RH, Tooley WH (1975) Continuous positive airway pressure and pulmonary and circulatory function after cardiac surgery in infants less than three months of age. Anesthesiology 43:426–431PubMedCrossRef
216.
Zurück zum Zitat Colgan FJ, Stewart S (1979) PEEP and CPAP following open-heart surgery in infants and children. Anesthesiology 50:336–341PubMedCrossRef Colgan FJ, Stewart S (1979) PEEP and CPAP following open-heart surgery in infants and children. Anesthesiology 50:336–341PubMedCrossRef
217.
Zurück zum Zitat Kardos A, Vereczkey G, Szentirmai C (2005) Haemodynamic changes during positive-pressure ventilation in children. Acta Anaesthesiol Scand 49:649–653PubMedCrossRef Kardos A, Vereczkey G, Szentirmai C (2005) Haemodynamic changes during positive-pressure ventilation in children. Acta Anaesthesiol Scand 49:649–653PubMedCrossRef
218.
Zurück zum Zitat Levett JM, Culpepper WS, Lin CY, Arcilla RA, Replogle RL (1983) Cardiovascular responses to PEEP and CPAP following repair of complicated congenital heart defects. Ann Thorac Surg 36:411–416PubMedCrossRef Levett JM, Culpepper WS, Lin CY, Arcilla RA, Replogle RL (1983) Cardiovascular responses to PEEP and CPAP following repair of complicated congenital heart defects. Ann Thorac Surg 36:411–416PubMedCrossRef
219.
Zurück zum Zitat Alexi-Meskhisvili VV, Falkowski GE, Nikoljuk AP, Popov SA (1985) Hemodynamic changes during mechanical ventilation in infants and small children after open heart surgery. Thorac Cardiovasc Surg 33:215–217PubMedCrossRef Alexi-Meskhisvili VV, Falkowski GE, Nikoljuk AP, Popov SA (1985) Hemodynamic changes during mechanical ventilation in infants and small children after open heart surgery. Thorac Cardiovasc Surg 33:215–217PubMedCrossRef
220.
Zurück zum Zitat Vincent JL (2010) We should abandon randomized controlled trials in the intensive care unit. Crit Care Med 38:S534–S538PubMedCrossRef Vincent JL (2010) We should abandon randomized controlled trials in the intensive care unit. Crit Care Med 38:S534–S538PubMedCrossRef
221.
Zurück zum Zitat Khemani RG, Newth CJ (2010) The design of future pediatric mechanical ventilation trials for acute lung injury. Am J Respir Crit Care Med 182:1465–1474PubMedPubMedCentralCrossRef Khemani RG, Newth CJ (2010) The design of future pediatric mechanical ventilation trials for acute lung injury. Am J Respir Crit Care Med 182:1465–1474PubMedPubMedCentralCrossRef
222.
Zurück zum Zitat Conti G, Piastra M (2016) Mechanical ventilation for children. Curr Opin Crit Care 22:60–66PubMedCrossRef Conti G, Piastra M (2016) Mechanical ventilation for children. Curr Opin Crit Care 22:60–66PubMedCrossRef
Metadaten
Titel
Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC)
verfasst von
Martin C. J. Kneyber
Daniele de Luca
Edoardo Calderini
Pierre-Henri Jarreau
Etienne Javouhey
Jesus Lopez-Herce
Jürg Hammer
Duncan Macrae
Dick G. Markhorst
Alberto Medina
Marti Pons-Odena
Fabrizio Racca
Gerhard Wolf
Paolo Biban
Joe Brierley
Peter C. Rimensberger
on behalf of the section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care
Publikationsdatum
22.09.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Intensive Care Medicine / Ausgabe 12/2017
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-017-4920-z

Weitere Artikel der Ausgabe 12/2017

Intensive Care Medicine 12/2017 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.