Skip to main content
Log in

Diagnosis and classification of chondral knee injuries: comparison between magnetic resonance imaging and arthroscopy

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To compare the magnetic resonance imaging (MRI) findings of patients undergoing knee arthroscopy for chondral lesions. The hypothesis was that MRI displays low sensitivity in the diagnosis and classification of chondral injuries.

Methods

A total of 83 knees were evaluated. The MRIs were performed using the same machine (GE SIGNA HDX 1.45 T). The MRI results were compared with the arthroscopy findings, and an agreement analysis was performed. Thirty-eight of the 83 MRI exams were evaluated by another radiologist for inter-observer agreement analysis. These analyses were performed using the kappa (κ) coefficient.

Results

The highest incidence of chondral injury was in the patella (14.4 %). The κ coefficient was 0.31 for the patellar surface; 0.38 for the trochlea; 0.46 for the medial femoral condyle; 0.51 for the lateral femoral condyle; and 0.19 for the lateral plateau. After dividing the injuries into two groups (ICRS Grades 0–II and Grades III and IV), the following κ coefficients were obtained as follows: 0.49 (patella); 0.53 (trochlea); 0.46 (medial femoral condyle); 0.43 (medial plateau); 0.67 (lateral femoral condyle); and 0.51 (lateral plateau). The MRI sensitivity was 76.4 % (patella), 88.2 % (trochlea), 69.7 % (medial femoral condyle), 85.7 % (medial plateau), 81.8 % (lateral femoral condyle) and 75 % (lateral plateau). Comparing the radiologists’ evaluations, the following κ coefficients were obtained as follows: 0.73 (patella); 0.63 (trochlea); 0.84 (medial femoral condyle); 0.72 (medial plateau); 0.77 (lateral femoral condyle); and 0.91 (lateral plateau).

Conclusion

Compared with arthroscopy, MRI displays moderate sensitivity for detecting and classifying chondral knee injuries. It is an important image method, but we must be careful in the assessment of patients with suspected chondral lesions.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alves Filho UPC, Leal LC, Fernandes AAC, Marques PO, Silva RR (2010) Concordância entre artroscopia e ressonância magnética para avaliação das lesões do joelho. Rev Baiana Saúde Pública 34:11–18

    Google Scholar 

  2. Arøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG, Engebretsen L (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32(1):211–215

    Article  PubMed  Google Scholar 

  3. Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW, Belzer JP, Wischer TK, Genant HK (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172(4):1073–1080

    Article  CAS  PubMed  Google Scholar 

  4. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Jt Surg Am 85-A(Suppl 2):58–69

    Google Scholar 

  5. Campbell AB, Knopp MV, Kolovich GP, Wei W, Jia G, Siston RA, Flanigan DC (2013) Preoperative MRI underestimates articular cartilage defect size compared with findings at arthroscopic knee surgery. Am J Sports Med 41(3):590–595

    Article  PubMed  Google Scholar 

  6. de Windt TS, Welsch GH, Brittberg M, Vonk LA, Marlovits S, Trattnig S, Saris DB (2013) Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am J Sports Med 41(7):1695–1702

    Article  PubMed  Google Scholar 

  7. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I (2007) Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy 23(3):312–315

    Article  PubMed  Google Scholar 

  8. Galea A, Giuffre B, Dimmick S, Coolican MR, Parker DA (2009) The accuracy of magnetic resonance imaging scanning and its influence on management decisions in knee surgery. Arthroscopy 25(5):473–480

    Article  PubMed  Google Scholar 

  9. Harris JD, Brophy RH, Jia G, Price B, Knopp M, Siston RA, Flanigan DC (2012) Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy 28(11):1728–1737

    Article  PubMed  Google Scholar 

  10. Hartley KG, Damon BM, Patterson GT, Long JH, Holt GE (2012) MRI techniques: a review and update for the orthopaedic surgeon. J Am Acad Orthop Surg 20(12):775–787

    PubMed  Google Scholar 

  11. Ho YY, Stanley AJ, Hui JH, Wang SC (2007) Postoperative evaluation of the knee after autologous chondrocyte implantation: what radiologists need to know. RadioGraphics 27(1):207–222

    Article  PubMed  Google Scholar 

  12. Jungius KP, Schmid MR, Zanetti M, Hodler J, Koch P, Pfirrmann CW (2006) Cartilaginous defects of the femorotibial joint: accuracy of coronal short inversion time inversion-recovery MR sequence. Radiology 240(2):482–488

    Article  PubMed  Google Scholar 

  13. Kaplan LD, Schurhoff MR, Selesnick H, Thorpe M, Uribe JW (2005) Magnetic resonance imaging of the knee in asymptomatic professional basketball players. Arthroscopy 21(5):557–561

    Article  PubMed  Google Scholar 

  14. Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250(3):839–848

    Article  PubMed  Google Scholar 

  15. Kijowski R, Blankenbaker DG, Woods M, Del Rio AM, De Smet AA, Reeder SB (2011) Clinical usefulness of adding 3D cartilage imaging sequences to a routine knee MR protocol. AJR Am J Roentgenol 196(1):159–167

    Article  PubMed  Google Scholar 

  16. Kuikka PI, Kiuru MJ, Niva MH, Kröger H, Pihlajamäki HK (2006) Sensitivity of routine 1.0-Tesla magnetic resonance imaging versus arthroscopy as gold standard in fresh traumatic chondral lesions of the knee in young adults. Arthroscopy 22(10):1033–1039

    Article  PubMed  Google Scholar 

  17. Mattila VM, Weckström M, Leppänen V, Kiuru M, Pihlajamäki H (2012) Sensitivity of MRI for articular cartilage lesions of the patellae. Scand J Surg 101(1):56–61

    Article  CAS  PubMed  Google Scholar 

  18. Mori R, Ochi M, Sakai Y, Adachi N, Uchio Y (1999) Clinical significance of magnetic resonance imaging (MRI) for focal chondral lesions. Magn Reson Imaging 17(8):1135–1140

    Article  CAS  PubMed  Google Scholar 

  19. Munk B, Madsen F, Lundorf E, Staunstrup H, Schmidt SA, Bolvig L, Hellfritzsch MB, Jensen J (1998) Clinical magnetic resonance imaging and arthroscopic findings in knees: a comparative prospective study of meniscus anterior cruciate ligament and cartilage lesions. Arthroscopy 14(2):171–175

    Article  CAS  PubMed  Google Scholar 

  20. Nepple JJ, Wright RW, Matava MJ, Brophy RH (2012) Full-thickness knee articular cartilage defects in national football league combine athletes undergoing magnetic resonance imaging: prevalence, location, and association with previous surgery. Arthroscopy 28(6):798–806

    Article  PubMed  Google Scholar 

  21. Oakley SP, Portek I, Szomor Z, Appleyard RC, Ghosh P, Kirkham BW, Murrell GA, Lassere MN (2005) Arthroscopy—a potential “gold standard” for the diagnosis of the chondropathy of early osteoarthritis. Osteoarthr Cartil 13(5):368–378

    Article  CAS  PubMed  Google Scholar 

  22. Quatman CE, Hettrich CM, Schmitt LC, Spindler KP (2011) The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med 39(7):1557–1568

    Article  PubMed  PubMed Central  Google Scholar 

  23. Severino NR, Camargo OP, Aihara T, Cury RP, Oliveira VM, Vaz CE, Chameck A, Tomazini A, Silva JL (1997) Comparação entre a ressonância magnética e a artroscopia no diagnóstico das lesões do joelho. Rev Bras Ortop 32:275–278

    Google Scholar 

  24. Shelbourne KD, Jari S, Gray T (2005) Outcome of untreated traumatic articular cartilage defects of the knee. J Bone Jt Surg 85-A(Suppl 2):8–16

    Google Scholar 

  25. Sonin AH, Pensy RA, Mulligan ME, Hatem S (2002) Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. AJR Am J Roentgenol 179(5):1159–1166

    Article  PubMed  Google Scholar 

  26. Vaz CE, Camargo OP, Santana PJ, Valezi AC (2005) Accuracy of magnetic resonance in identifying traumatic intraarticular knee lesions. Clinics 60(6):445–450

    Article  PubMed  Google Scholar 

  27. von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M (2007) The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet. Arthroscopy 23(5):496–502

    Article  Google Scholar 

  28. von Engelhardt LV, Raddatz M, Bouillon B, Spahn G, Dàvid A, Haage P, Lichtinger TK (2010) How reliable is MRI in diagnosing cartilaginous lesions in patients with first and recurrent lateral patellar dislocations? BMC Musculoskelet Disord 11:149

    Article  Google Scholar 

  29. von Engelhardt LV, Lahner M, Klussmann A, Bouillon B, Dàvid A, Haage P, Lichtinger TK (2010) Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord 11:75

    Article  Google Scholar 

  30. Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF, Winalski CS, Lang P (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20(5):857–864

    Article  PubMed  Google Scholar 

  31. Zhang M, Min Z, Rana N, Liu H (2013) Accuracy of magnetic resonance imaging in grading knee chondral defects. Arthroscopy 29(2):349–356

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the work of the Research Support Department of Botucatu Medical School—UNESP, which performed all the statistical analyses.

Ethical standard

The study was previously approved by the ethics research committee of the Irmandade Santa Casa de Londrina—BIOISCAL (Protocol Number: 38020114.7.0000.0099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Vinicius Danieli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danieli, M.V., Guerreiro, J.P.F., Queiroz, A.d. et al. Diagnosis and classification of chondral knee injuries: comparison between magnetic resonance imaging and arthroscopy. Knee Surg Sports Traumatol Arthrosc 24, 1627–1633 (2016). https://doi.org/10.1007/s00167-015-3622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3622-8

Keywords

Navigation