Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 4/2016

Open Access 15.02.2016 | Ankle

Biomechanical stability of tape augmentation for anterior talofibular ligament (ATFL) repair compared to the native ATFL

verfasst von: M. Willegger, E. Benca, L. Hirtler, K. Hradecky, J. Holinka, R. Windhager, R. Schuh

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 4/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Purpose

Current methods of anterior talofibular ligament (ATFL) reconstruction fail to restore the stability of the native ATFL. Therefore, augmented anatomic ATFL reconstruction gained popularity in patients with attenuated tissue and additional stress on the lateral ankle ligament complex. The aim of the present study was to evaluate the biomechanical stability of the InternalBrace® (Arthrex Inc., Naples, FL, USA), a tape augmentation designed to augment the traditional Broström procedure.

Methods

Twelve (12) fresh-frozen human anatomic lower leg specimens were randomized into two groups: a native ATFL (ATFL) and a tape augmentation group (IB). Dual-energy X-ray absorptiometry (DEXA) scans were carried out to determine bone mineral density (BMD) of the specimens. The ligaments were stressed by internally rotating the tibia against the inverted fixated hindfoot. Torque at failure (Nm) and angle at failure (°) were recorded.

Results

The ATFL group failed at an angle of 33 ± 10°. In the IB group, construct failure occurred at an angle of 46 ± 16°. Failure torque reached 8.3 ± 4.5 Nm in the ATFL group, whereas the IB group achieved 11.2 ± 7.1 Nm. There was no correlation between angle at ATFL or IB construct failure or torque at failure, respectively, and BMD for both groups.

Conclusion

This study reveals that tape augmentation for ATFL reconstruction shows similar biomechanical stability compared to an intact native ATFL in terms of torque at failure and angle at failure. BMD did not influence the construct stability. Tape augmentation proved an enhanced initial stability in ATFL reconstruction which may allow for an accelerated rehabilitation process.

Level of evidence

II.

Introduction

Anatomic repair of the anterior talofibular ligament (ATFL) as described by Broström [5] is considered the standard surgical treatment for patients with chronic lateral ankle instability [13, 38]. Despite adequate clinical results, recent biomechanical studies revealed that current methods of reconstruction fail to fully restore the biomechanical strength of the native ATFL [6, 16, 17, 19, 27, 36, 37]. Mechanical instability and functional instability represent major complications of ATFL reconstruction [12, 20, 33]. High stresses acting on the reconstructed ATFL may lead to ATFL elongation during post-operative rehabilitation with consecutive instability of the ankle joint [24]. In particular, patients with pre-existing pathologic conditions that strain the lateral ankle ligaments (i.e. cavovarus deformity, joint hyperlaxity and overweight) require substantial primary stability of the construct in order to withstand the supplemental applied stress and to prevent early failure [26, 31, 33]. Additionally, patients with attenuated tissue, previously failed ATFL reconstruction and professional athletes are in danger to tear the reconstructed ATFL [13, 30, 31].
Therefore, augmented anatomic ATFL reconstruction has been endorsed for patients with exposure for ATFL reconstruction failure [33]. Various techniques have been proposed to enhance the initial construct stability of anatomic ATFL reconstruction, using suture anchor techniques [29] or requiring free tendon grafts [11, 33]. Due to the potential risk of donor-site morbidity after graft harvesting and the still inferior biomechanical results of suture anchor techniques compared to the native ATFL, there is a demand for less invasive and biomechanically more stable reconstructions. Hence, recent attention has been focussed on tape augmentation to improve primary stability of lateral ankle ligament repair [7, 34, 36]. It operates as internal additional reinforcement of an anatomic ATFL reconstruction in order to enhance the initial construct stability and to prevent early failure or elongation. Tape augmentation can be performed by open surgery or arthroscopically assisted surgery.
Post-operative early range of motion rehabilitation has been shown to have superior outcome regarding plantar flexion strength, mechanical stability of the ankle and return to sports activities, compared to cast immobilization [20, 21]. Enhanced primary stability of ATFL reconstruction could allow for an accelerated rehabilitation protocol without the need for cast immobilization.
However, little is known about the biomechanical characteristics of tape augmentation [34, 36]. Additionally, the influence of bone mineral density on the stability of a tape augmentation device has not been examined yet.
In the present study, the stability of the InternalBrace® (Arthrex Inc., Naples, FL, USA), a tape augmentation designed to augment a traditional Broström procedure utilizing BioComposite SwiveLock® (Arthrex Inc., Naples, FL, USA) and FiberTape® (Arthrex Inc., Naples, FL, USA), has been evaluated. We hypothesized that tape augmentation would show similar biomechanical stability compared to an intact native ATFL at time zero. Further, correlation between BMD and construct stability has been analysed.

Materials and methods

Twelve (12) fresh-frozen human anatomic ankle specimens (mean age 78.2 ± 11.6 years; range 60–92 years; six male and six female) were used for data collection of this study. All specimens were screened for evidence of ankle instability, hyperlaxity, fracture and previous ankle or hindfoot surgery. Prior to biomechanical testing, dual-energy X-ray absorptiometry (DEXA) scans were carried out in the calcaneus to determine bone mineral density (BMD) of the specimens. All measurements were taken with Lunar, Prodigy series X-ray, GE Medical Systems (GE Healthcare Europe GmbH, Vienna). This system provides precise data on soft tissue and bone composition including bone mineral density (BMD), lean and fat tissue mass and percentage of fat. Repeatability of DEXA measurements has been excellent for bone mineral density using Lunar Prodigy densitometer in prior studies [28].
The specimens were stored at –80 °C and thawed at room temperature only 48 h before use in order to prevent a possible tissue dehydration, which can affect their mechanical properties [40, 41].
Following inspection of the specimens, all ankles proved validity for the study and thereafter were randomly assigned to two different groups with six specimens in each group. Age distribution and BMD were similar among the groups. The specimens of the first group served as the native ATFL group (ATFL) and the second group served as tape augmentation (InternalBrace®, Arthrex Inc., Naples, FL, USA) group (IB).

Specimen preparation

Each specimen was transected at the mid-tibia approximately 25 cm above the ankle joint. Soft tissue was removed, and the proximal aspect of the tibia was rigidly embedded in a custom-made steel cup with Wood’s metal [22]. The fibula was then drilled to the tibia with a conventional 4.0-mm screw in order to prevent tibiofibular movement during biomechanical testing [34, 40, 41].
For biomechanical testing of the ATFL stability (ATFL group), ankle specimens were left intact after reassurance for an unimpaired ATFL. Anterior drawer test and talar tilt test were conducted to check for intact ligaments.
In specimens which were performed with tape augmentation (IB group), a J-shaped incision was carried out just anterior to the fibula to allow easy exposure of the anterolateral capsule and ATFL and calcaneofibular ligament (CFL) [1]. The incision extended from the distal tip of the fibula along its anterior margin proximally to the level of the ankle mortise. Dissection was taken down to the fibular periosteum. The joint capsule was incised in line with the skin incision and just distal to the leading edge of the fibula. The ATFL and CFL were directly inspected, and all specimens had intact ligaments. Subsequently, a curved haemostat was placed within the lateral ankle joint and passed under the lateral capsule and the ATFL, exiting just anterior to the peroneal tendon sheath (Fig. 1). The ATFL was meticulously divided in mid-substance with a scalpel. The anterior drawer test was conducted in order to confirm the creation of anterior instability of the ankle.
The biomechanical stability of the augmentation construct (IB group) was tested by application of the InternalBrace® at the insertion and origin of the ATFL [1, 39]. A hole was drilled with the 2.7-mm drill in the fibula, angled slightly proximally, in line with the lateral border of the foot. Afterwards, the hole was taped with a 3.5-mm tape to breach the fibular cortex. The 3.5-mm SwiveLock® was loaded with FiberTape® and placed into the fibular hole by turning the driver clockwise. Then the 3.4-mm drill was drilled into the lateral aspect of the talus in line with the superior ATFL directed 45° posteromedially with respect to the lateral border of the foot. The talar tunnel was taped with the 4.75-mm SwiveLock® Tape. Range of motion was checked before the second anchor was inserted. Both limbs of the FiberTape® were passed through the eyelet of the 4.75-mm SwiveLock®, and the anchor was inserted with the foot placed in a slightly plantar-flexed position with 5° of eversion. To avoid overtensioning, a small curved haemostat was placed between the FiberTape® and talus while inserting the SwiveLock® [37]. All dissections and repairs were performed by a single experienced foot and ankle surgeon.

Biomechanical testing

The mechanical testing for this study was performed with an 858 Mini Bionix® (MTS® Systems Corporation, Eden Prairie, MN, USA) and a specially designed mounting platform. The 858 Mini Bionix® is a servo-hydraulic test frame, consisting of a loading frame (MTS® 858, Eden Prairie, MN, USA) with a stroke main actuator driven by a hydraulic pump unit (MTS® 505.11 silent flow, Eden Prairie, MN, USA). The lower leg specimen was mounted in the cylindrical clamp of the 858 Mini Bionix®. All specimens were positioned with their mechanical tibial axis coinciding with the rotational axis of the 858 Mini Bionix® by use of a fixed laser beam. Furthermore, the specimens were placed in 20° of plantar flexion and 15° of hindfoot inversion to simulate the kinematics during ankle sprain [3, 25]. The specially designed mounting platform enables fixation of the calcaneus with a 4.5-mm Steinmann pin. The pin was drilled through the calcaneus, posterior to the longitudinal axis of the tibia. Additionally, poly(methyl methacrylate) cement (PMMA) was used to rigidly fixate the Steinmann pin within the calcaneus in order to prevent loosening of the pin with subsequent inaccuracy in measurements. The Steinmann pin was then locked in a guide block attached to the platform. The platform and the load frame allow accurate positioning of the proximal and distal fixation of the ankle specimen [34, 40, 41] (Fig. 2).
In order to simulate stresses in the lateral ankle ligaments during in vivo ankle sprain, torsion was applied on specimens by internal rotation of the tibia against the fixated hindfoot from 0° to 50°, followed by re-relaxation to 0°. The guide block of the platform enables anterior-to-posterior motion of the hindfoot during internal rotation allowing anterior translation of the talus. Hence, the ATFL can be maximally stressed. The first test series was carried out on the healthy specimens with intact ATFL and CFL (ATFL group) (Fig. 3a), followed by the specimens with transected ATFL and InternalBrace® augmentation (IB group) (Fig. 3b). The torque (Nm) required to resist the internal rotation as well as the rotary displacement (°) of the load frame was recorded at a measuring frequency of 100 Hz. The procedure was stopped at the maximum of 50° internal rotation followed by unloading.
The measurement transducer for the angular displacement and the torque is integrated into the 858 Mini Bionix II® testing system. The accuracy for the angular displacement transducer is <0.3 and <0.5 % for the torque transducer, respectively.
The study was approved by the Institutional Review Board (EK 1895/2013) of the Medical University of Vienna.

Statistical analysis

All analyses were performed using SPSS 20.0 for Windows (SPSS Inc, Chicago, IL, USA), and the level of significance was set at p < 0.05. All data showed a normal distribution in Kolmogorov–Smirnov test. Intergroup differences in age, BMD, failure angle and failure torque were analysed using independent t test.
For t tests that demonstrated a statistically significant difference, a post hoc Tukey’s honestly significant difference test was conducted to assess the location of the means that were statistically significant between the groups. Correlation was analysed with Pearson correlation coefficient. A post hoc power analysis was performed with G*Power 3.1 for MAC OS X (http://​www.​gpower.​hhu.​de).

Results

Both groups of specimens did not differ by age, sex or bone mineral density (BMD) (Table 1). The biomechanical testing results are summarized in Table 2. Torque at failure reached 8.3 ± 4.5 Nm in the ATFL group, whereas the IB group achieved 11.2 ± 7.1 Nm (n.s.). The intact ATFL group failed at an angle of 33 ± 10° of internal rotation. In the IB group, construct failure occurred at an angle of 46 ± 16° (n.s.).
Table 1
Descriptive data of the tested ankle specimens
Group
Intact ATFL (n = 6)
Tape augmentation (InternalBrace) (n = 6)
p values
Age (years)
76.6 ± 12.8
79.6 ± 11.2
n.s.
BMD (g/cm2)
0.46 ± 0.18
0.44 ± 0.16
n.s.
Sex (male/female)
3 m/3 f
3 m/3 f
n.s.
Side (left/right)
2 l/4 r
4 l/2 r
n.s.
Table 2
Mean values and standard deviations of maximal tolerated torque to failure and failure angle at maximum tolerated torque to failure
Group
Intact ATFL (n = 6)
Tape augmentation (InternalBrace) (n = 6)
p values
Max. failure torque (Nm)
8.3 ± 4.5
11.2 ± 7.1
n.s.
Failure angle (°)
33 ± 10
46 ± 16
n.s.
Mean BMD in the native ATFL group was 0.46 ± 0.18 and 0.44 ± 0.16 g/cm2 in the IB group (n.s.). There was no correlation between angle at ATFL or IB construct failure or torque at failure, respectively, and BMD for both groups.
Assessment of the mode of failure after mechanical testing revealed that the most common mode of failure in the ATFL group was rupture at the mid-portion of the ligament (n = 5 out of 6). Two of those specimens had an additional partial rupture of the calcaneofibular ligament (CFL). One specimen failed at the fibular origin of the ATFL. In the IB group, five constructs failed due to pull-out of the talar anchor and one anchor pull-out occured at the fibula. No correlation between BMD and mode of failure could be observed.

Discussion

The most important finding of the study was a similar initial construct stability for the InternalBrace® compared to the intact native ATFL. Various ATFL reconstruction techniques and modifications have been proposed, aiming to improve construct stability [2, 8, 10, 15, 18, 23, 29]. Nevertheless, recent biomechanical studies showed that current methods of anatomic ATFL reconstruction do not restore the strength of the native ATFL [36, 37]. Patients with additional strains on the lateral ankle ligaments due to hindfoot cavovarus deformity, poor tissue quality, obesity or professional athletes require initial stability after anatomic ATFL reconstruction, preventing elongation or failure of the reconstruction and allowing early mobilization. Therefore, recently augmented ATFL reconstruction was introduced. This study aimed to evaluate the biomechanical stability of tape augmentation compared to the intact native ATFL.
Both groups showed comparable means in terms of torque and angle at failure during biomechanical testing. Additionally, we found no correlation of bone mineral density and torque or angle at failure between the two groups. Mode of failure assessment showed rupture at the mid-portion of the ATFL as the most common failure in the native ATFL group. In the tape augmentation group, talar anchor pull-out was the most common mode of failure.
The torque at failure in the IB group reached 11.2 ± 7.1 Nm compared to 8.3 ± 4.5 Nm in the ATFL group. The intact ATFL constructs failed at a mean angle of 33 ± 10° of internal rotation, and the IB group failed at a mean angle of 46 ± 16°. Both groups of specimens showed no difference in bone mineral density with 0.46 ± 0.18 g/cm2 in the ATFL and 0.44 ± 0.16 g/cm2 in the IB group.
Numerous authors focussed on the biomechanical characteristics of suture anchor repair in anatomic reconstruction techniques compared to the native ATFL. They revealed that the reconstructed ATFL has inferior biomechanical stability in terms of force resistance than the native ATFL [36, 37].
Viens et al. [36] investigated biomechanical characteristics of tape augmentation, the intact ATFL and an augmented Broström repair. A load to failure test was carried out stressing the lateral ligaments by axial load application through the fibula. The ultimate load to failure of the tape augmentation group was statistically significantly higher than in the intact ATFL group. However, there was no statistically significant difference between the intact ATFL and the Broström repair with tape augmentation. The authors did not comment on the finding that the Broström repair with augmentation showed less strength than the stand-alone augmentation. Nevertheless, they observed higher biomechanical stability of the suture tape augmentation in relation to the native ATFL which corresponds to our findings in terms of tolerated torque and angle at failure. Schuh et al. [34] showed statistically superior performance concerning angle at failure as well as torque at failure for an InternalBrace® with Broström reconstruction compared to a suture anchor fixated Broström and a traditional Broström repair. BMD was analysed and did not influence the construct stability in the suture anchor repair groups. Another study by Clanton et al. [9] compared an anatomic ATFL reconstruction with semitendinosus allograft to an intact ATFL in a biomechanical load to failure setting. Ultimate load to failure and stiffness of the allograft were not significantly different from the native ATFL. Nevertheless, clinical studies for allograft use in ATFL reconstruction are sparse with small retrospective case series, and the potential risks of disease transmission or rejection of the graft by the host limit its widespread clinical use [14, 32].
Kirk et al. [24] postulated the need for post-operative protected dorsi- and plantar flexion of the ankle after ATFL repair. In a cyclic loading model, they tested elongation of the unprotected repaired ATFL, the protected repaired ATFL, the protected intact ATFL and protected sectioned ATFL. Initial elongation was significantly higher in the unprotected repaired group than in the protected groups. Avoidance of ligament elongation could be provided by the internal protection of the reconstructed ATFL by tape augmentation.
Different types of modes of failure in ATFL rupture and ATFL reconstruction failure have been described. In our test series, talar anchor pull-out was the most common mode of failure in the IB group. Ligament rupture in mid-substance was the most frequent mode of failure in the native ATFL group which confirms our test set-up to be effective in simulation of in vivo ankle sprain kinematics. Anchor pull-out is the most common mode of failure in biomechanical studies testing suture anchor reconstruction [16, 17, 34, 36, 37].
These findings might be explained by high donor age and poor bone mineral density of the tested specimens. In rotator cuff repair, low bone mineral density has been shown to have a significant impact on anchor failure [4, 35]. There are a few biomechanical studies focussing on lateral ankle ligament reconstruction with suture anchors investigating the influence of BMD on construct stability [6, 16, 17, 34, 36, 37]. Therefore, DEXA scans were performed in advance to assess the bone mineral density of the specimens, in order to question the influence of BMD on the mode of failure, torque at failure and angle at failure. In our study, we could not find any correlation between mode of failure and BMD.
There are some potential limitations associated with this study. First, we did not perform a matched-pair study. To compensate for this potential drawback, we determined bone mineral density prior to mechanical testing in order to prove equality of the two specimen groups in addition to a similar age distribution among groups. Nevertheless, even in matched-pair studies the structure and the quality of the ligamentous tissue can only be assessed by direct inspection or by stressing the lateral ligaments with talar tilt and anterior drawer test, which we performed meticulously. Second, the number of tested specimens was relatively low with 12 tested specimens, which is common in biomechanical studies due to unavailability of human anatomic specimens. Third, as in every biomechanical test set-up, we tried to simulate in vivo conditions in a laboratory setting which might not represent in vivo stresses acting on the ATFL. However, as we aimed to evaluate the biomechanical characteristics of the intact ATFL and the InternalBrace®, we applied torsion until failure in a plantar flexed and adducted foot.
In case of a sudden inversion injury of the ankle while the reconstructed ligament is not completely healed, re-rupture could occur [26, 31, 33]. As prior biomechanical studies demonstrated, the proposed commonly used reconstructions showed a decreased stability compared to the native ATFL [36, 37]. Therefore, the additional protective strength applied with tape augmentation to a standard Broström repair could allow for an earlier and more active remobilization regimen. Less strain would act on the Broström reconstruction, and ligament healing could proceed without the risk of ATFL elongation with consecutive lateral ankle instability. However, these potential biomechanical advantages have to be proven clinically.

Conclusion

The present biomechanical study reveals that tape augmentation for ATFL reconstruction shows similar biomechanical stability compared to an intact native ATFL in terms of torque at failure and angle at failure. BMD did not seem to affect ATFL or IB construct failure.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
2.
Zurück zum Zitat Anderson ME (1985) Reconstruction of the lateral ligaments of the ankle using the plantaris tendon. J Bone Joint Surg Am 67:930–934PubMed Anderson ME (1985) Reconstruction of the lateral ligaments of the ankle using the plantaris tendon. J Bone Joint Surg Am 67:930–934PubMed
3.
Zurück zum Zitat Best R, Böhle C, Mauch F, Brüggemann PG (2014) Preventive lateral ligament tester (PLLT): a novel method to evaluate mechanical properties of lateral ankle joint ligaments in the intact ankle. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3190-3 PubMedCentral Best R, Böhle C, Mauch F, Brüggemann PG (2014) Preventive lateral ligament tester (PLLT): a novel method to evaluate mechanical properties of lateral ankle joint ligaments in the intact ankle. Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-014-3190-3 PubMedCentral
4.
Zurück zum Zitat Braunstein V, Ockert B, Windolf M, Sprecher CM, Mutschler W, Imhoff A, Postl LKL, Biberthaler P, Kirchhoff C (2015) Increasing pullout strength of suture anchors in osteoporotic bone using augmentation—a cadaver study. Clin Biomech 30:243–247CrossRef Braunstein V, Ockert B, Windolf M, Sprecher CM, Mutschler W, Imhoff A, Postl LKL, Biberthaler P, Kirchhoff C (2015) Increasing pullout strength of suture anchors in osteoporotic bone using augmentation—a cadaver study. Clin Biomech 30:243–247CrossRef
5.
Zurück zum Zitat Broström L (1966) Sprained ankles. VI. Surgical treatment of “chronic” ligament ruptures. Acta Chir Scand 132:551–565PubMed Broström L (1966) Sprained ankles. VI. Surgical treatment of “chronic” ligament ruptures. Acta Chir Scand 132:551–565PubMed
6.
Zurück zum Zitat Brown CA, Hurwit D, Behn A, Hunt KJ (2014) Biomechanical comparison of an all-soft suture anchor with a modified Broström–Gould suture repair for lateral ligament reconstruction. Am J Sports Med 42:417–422CrossRefPubMed Brown CA, Hurwit D, Behn A, Hunt KJ (2014) Biomechanical comparison of an all-soft suture anchor with a modified Broström–Gould suture repair for lateral ligament reconstruction. Am J Sports Med 42:417–422CrossRefPubMed
7.
Zurück zum Zitat Cho B-K, Park K-J, Kim S-W, Lee H-J, Choi S-M (2015) Minimal invasive suture-tape augmentation for chronic ankle instability. Foot Ankle Int 36:1330–1338CrossRefPubMed Cho B-K, Park K-J, Kim S-W, Lee H-J, Choi S-M (2015) Minimal invasive suture-tape augmentation for chronic ankle instability. Foot Ankle Int 36:1330–1338CrossRefPubMed
8.
Zurück zum Zitat Chrisman OD, Snook GA (1969) Reconstruction of lateral ligament tears of the ankle. An experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure. J Bone Joint Surg Am 51:904–912PubMed Chrisman OD, Snook GA (1969) Reconstruction of lateral ligament tears of the ankle. An experimental study and clinical evaluation of seven patients treated by a new modification of the Elmslie procedure. J Bone Joint Surg Am 51:904–912PubMed
9.
Zurück zum Zitat Clanton TO, Campbell KJ, Wilson KJ, Michalski MP, Goldsmith MT, Wijdicks CA, Laprade RF (2014) Qualitative and quantitative anatomic investigation of the lateral ankle ligaments for surgical reconstruction procedures. J Bone Joint Surg Am 96(12):e98CrossRefPubMed Clanton TO, Campbell KJ, Wilson KJ, Michalski MP, Goldsmith MT, Wijdicks CA, Laprade RF (2014) Qualitative and quantitative anatomic investigation of the lateral ankle ligaments for surgical reconstruction procedures. J Bone Joint Surg Am 96(12):e98CrossRefPubMed
10.
Zurück zum Zitat Colville MR, Grondel RJ (1995) Anatomic reconstruction of the lateral ankle ligaments using a split peroneus brevis tendon graft. Am J Sports Med 23:210–213CrossRefPubMed Colville MR, Grondel RJ (1995) Anatomic reconstruction of the lateral ankle ligaments using a split peroneus brevis tendon graft. Am J Sports Med 23:210–213CrossRefPubMed
11.
Zurück zum Zitat Coughlin MJ, Matt V, Schenck RC (2001) Augmented lateral ankle reconstruction using a free gracilis graft. Orthopedics 25:31–35 Coughlin MJ, Matt V, Schenck RC (2001) Augmented lateral ankle reconstruction using a free gracilis graft. Orthopedics 25:31–35
12.
Zurück zum Zitat de Vries JS, Krips R, Sierevelt IN, Blankevoort L, van Dijk CN (2010) Interventions for treating chronic ankle instability. Cochrane Database Syst Rev CD004124 de Vries JS, Krips R, Sierevelt IN, Blankevoort L, van Dijk CN (2010) Interventions for treating chronic ankle instability. Cochrane Database Syst Rev CD004124
13.
Zurück zum Zitat DiGiovanni CW, Brodsky A (2006) Current concepts: lateral ankle instability. Foot Ankle Int 27:854–866PubMed DiGiovanni CW, Brodsky A (2006) Current concepts: lateral ankle instability. Foot Ankle Int 27:854–866PubMed
14.
Zurück zum Zitat Ellis SJ, Williams BR, Pavlov H, Deland J (2011) Results of anatomic lateral ankle ligament reconstruction with tendon allograft. HSS J 7:134–140CrossRefPubMedPubMedCentral Ellis SJ, Williams BR, Pavlov H, Deland J (2011) Results of anatomic lateral ankle ligament reconstruction with tendon allograft. HSS J 7:134–140CrossRefPubMedPubMedCentral
15.
16.
Zurück zum Zitat Giza E, Whitlow SR, Williams BT, Acevedo JI, Mangone PG, Haytmanek CT, Curry EE, Turnbull TL, Laprade RF, Wijdicks CA, Clanton TO (2015) Biomechanical analysis of an arthroscopic Broström ankle ligament repair and a suture anchor-augmented repair. Foot Ankle Int 36:836–841CrossRefPubMed Giza E, Whitlow SR, Williams BT, Acevedo JI, Mangone PG, Haytmanek CT, Curry EE, Turnbull TL, Laprade RF, Wijdicks CA, Clanton TO (2015) Biomechanical analysis of an arthroscopic Broström ankle ligament repair and a suture anchor-augmented repair. Foot Ankle Int 36:836–841CrossRefPubMed
17.
Zurück zum Zitat Giza E, Nathe R, Nathe T, Anderson M, Campanelli V (2012) Strength of bone tunnel versus suture anchor and push-lock construct in Broström repair. Am J Sports Med 40:1419–1423CrossRefPubMed Giza E, Nathe R, Nathe T, Anderson M, Campanelli V (2012) Strength of bone tunnel versus suture anchor and push-lock construct in Broström repair. Am J Sports Med 40:1419–1423CrossRefPubMed
18.
Zurück zum Zitat Gould N, Seligson D, Gassman J (1980) Early and late repair of lateral ligament of the ankle. Foot Ankle 1:84–89CrossRefPubMed Gould N, Seligson D, Gassman J (1980) Early and late repair of lateral ligament of the ankle. Foot Ankle 1:84–89CrossRefPubMed
19.
Zurück zum Zitat Jung H-G, Kim T-H, Park J-Y, Bae E-J (2012) Anatomic reconstruction of the anterior talofibular and calcaneofibular ligaments using a semitendinosus tendon allograft and interference screws. Knee Surg Sports Traumatol Arthrosc 20:1432–1437CrossRefPubMed Jung H-G, Kim T-H, Park J-Y, Bae E-J (2012) Anatomic reconstruction of the anterior talofibular and calcaneofibular ligaments using a semitendinosus tendon allograft and interference screws. Knee Surg Sports Traumatol Arthrosc 20:1432–1437CrossRefPubMed
20.
Zurück zum Zitat Karlsson J, Rudholm O, Bergsten T, Faxén E, Styf J (1995) Early range of motion training after ligament reconstruction of the ankle joint. Knee Surg Sports Traumatol Arthrosc 3:173–177CrossRefPubMed Karlsson J, Rudholm O, Bergsten T, Faxén E, Styf J (1995) Early range of motion training after ligament reconstruction of the ankle joint. Knee Surg Sports Traumatol Arthrosc 3:173–177CrossRefPubMed
21.
Zurück zum Zitat Karlsson J, Lundin O, Lind K, Styf J (1999) Early mobilization versus immobilization after ankle ligament stabilization. Scand J Med Sci Sports 9:299–303CrossRefPubMed Karlsson J, Lundin O, Lind K, Styf J (1999) Early mobilization versus immobilization after ankle ligament stabilization. Scand J Med Sci Sports 9:299–303CrossRefPubMed
22.
Zurück zum Zitat Kim D-G, Dong XN, Cao T, Baker KC, Shaffer RR, Fyhrie DP, Yeni YN (2006) Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae. J Biomech Eng 128:161–165CrossRefPubMed Kim D-G, Dong XN, Cao T, Baker KC, Shaffer RR, Fyhrie DP, Yeni YN (2006) Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae. J Biomech Eng 128:161–165CrossRefPubMed
23.
Zurück zum Zitat Kim HN, Jeon JY, Dong Q, Noh KC, Chung KJ, Kim HK, Hwang JH, Park YW (2014) Lateral ankle ligament reconstruction using the anterior half of the peroneus longus tendon. Knee Surg Sports Traumatol Arthrosc 23:1877–1885CrossRefPubMed Kim HN, Jeon JY, Dong Q, Noh KC, Chung KJ, Kim HK, Hwang JH, Park YW (2014) Lateral ankle ligament reconstruction using the anterior half of the peroneus longus tendon. Knee Surg Sports Traumatol Arthrosc 23:1877–1885CrossRefPubMed
24.
Zurück zum Zitat Kirk KL, Campbell JT, Guyton GP, Parks BG, Schon LC (2008) ATFL elongation after Brostrom procedure: a biomechanical investigation. Foot Ankle Int 29:1126–1130CrossRefPubMed Kirk KL, Campbell JT, Guyton GP, Parks BG, Schon LC (2008) ATFL elongation after Brostrom procedure: a biomechanical investigation. Foot Ankle Int 29:1126–1130CrossRefPubMed
25.
Zurück zum Zitat Kovaleski JE, Heitman RJ, Gurchiek LR, Hollis JM, Liu W, Pearsall AW (2013) Joint stability characteristics of the ankle complex after lateral ligamentous injury, Part I: a laboratory comparison using arthrometric measurement. J Athl Train 49:192–197CrossRef Kovaleski JE, Heitman RJ, Gurchiek LR, Hollis JM, Liu W, Pearsall AW (2013) Joint stability characteristics of the ankle complex after lateral ligamentous injury, Part I: a laboratory comparison using arthrometric measurement. J Athl Train 49:192–197CrossRef
26.
Zurück zum Zitat Kuhn MA, Lippert FG (2006) Revision lateral ankle reconstruction. Foot Ankle Int 27:77–81PubMed Kuhn MA, Lippert FG (2006) Revision lateral ankle reconstruction. Foot Ankle Int 27:77–81PubMed
27.
Zurück zum Zitat Lee KT, Kim ES, Kim YH, Ryu JS, Rhyu IJ, Lee YK (2014) All-inside arthroscopic modified Broström operation for chronic ankle instability: a biomechanical study. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3159-2 Lee KT, Kim ES, Kim YH, Ryu JS, Rhyu IJ, Lee YK (2014) All-inside arthroscopic modified Broström operation for chronic ankle instability: a biomechanical study. Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-014-3159-2
28.
Zurück zum Zitat Lohman M, Tallroth K, Kettunen JA, Marttinen MT (2009) Reproducibility of dual-energy X-ray absorptiometry total and regional body composition measurements using different scanning positions and definitions of regions. Metab, Clin Exp 58:1663–1668CrossRef Lohman M, Tallroth K, Kettunen JA, Marttinen MT (2009) Reproducibility of dual-energy X-ray absorptiometry total and regional body composition measurements using different scanning positions and definitions of regions. Metab, Clin Exp 58:1663–1668CrossRef
29.
Zurück zum Zitat Messer TM, Cummins CA, Ahn J, Kelikian AS (2000) Outcome of the modified Broström procedure for chronic lateral ankle instability using suture anchors. Foot Ankle Int 21:996–1003PubMed Messer TM, Cummins CA, Ahn J, Kelikian AS (2000) Outcome of the modified Broström procedure for chronic lateral ankle instability using suture anchors. Foot Ankle Int 21:996–1003PubMed
30.
Zurück zum Zitat Safran MRM, Zachazewski JEJ, Benedetti RSR, Bartolozzi ARA, Mandelbaum RR (1999) Lateral ankle sprains: a comprehensive review part 2: treatment and rehabilitation with an emphasis on the athlete. Med Sci Sports Exerc 31:438–447CrossRef Safran MRM, Zachazewski JEJ, Benedetti RSR, Bartolozzi ARA, Mandelbaum RR (1999) Lateral ankle sprains: a comprehensive review part 2: treatment and rehabilitation with an emphasis on the athlete. Med Sci Sports Exerc 31:438–447CrossRef
31.
Zurück zum Zitat Sammarco GJ, Carrasquillo HA (1995) Surgical revision after failed lateral ankle reconstruction. Foot Ankle Int 16:748–753CrossRefPubMed Sammarco GJ, Carrasquillo HA (1995) Surgical revision after failed lateral ankle reconstruction. Foot Ankle Int 16:748–753CrossRefPubMed
32.
Zurück zum Zitat Schade VL, Harsha W, Rodman C, Roukis TS (2015) Peroneal tendon reconstruction and coverage for treatment of septic peroneal tenosynovitis: a devastating complication of lateral ankle ligament reconstruction with a tendon allograft. J Foot Ankle Surg. doi:10.1053/j.jfas.2015.02.007 Schade VL, Harsha W, Rodman C, Roukis TS (2015) Peroneal tendon reconstruction and coverage for treatment of septic peroneal tenosynovitis: a devastating complication of lateral ankle ligament reconstruction with a tendon allograft. J Foot Ankle Surg. doi:10.​1053/​j.​jfas.​2015.​02.​007
33.
Zurück zum Zitat Schenck RC, Coughlin MJ (2009) Lateral ankle instability and revision surgery alternatives in the athlete. Foot Ankle Clin 14:205–214CrossRefPubMed Schenck RC, Coughlin MJ (2009) Lateral ankle instability and revision surgery alternatives in the athlete. Foot Ankle Clin 14:205–214CrossRefPubMed
34.
Zurück zum Zitat Schuh R, Benca E, Willegger M, Hirtler L (2015) Comparison of Broström technique, suture anchor repair, and tape augmentation for reconstruction of the anterior talofibular ligament. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3631-7 Schuh R, Benca E, Willegger M, Hirtler L (2015) Comparison of Broström technique, suture anchor repair, and tape augmentation for reconstruction of the anterior talofibular ligament. Knee Surg Sports Traumatol Arthrosc. doi:10.​1007/​s00167-015-3631-7
35.
Zurück zum Zitat Tingart MJ, Apreleva M, Lehtinen J, Zurakowski D, Warner JJP (2004) Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? Am J Sports Med 32:1466–1473CrossRefPubMed Tingart MJ, Apreleva M, Lehtinen J, Zurakowski D, Warner JJP (2004) Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? Am J Sports Med 32:1466–1473CrossRefPubMed
36.
Zurück zum Zitat Viens NA, Wijdicks CA, Campbell KJ, Laprade RF, Clanton TO (2014) Anterior talofibular ligament ruptures, Part 1: biomechanical comparison of augmented Broström repair techniques with the intact anterior talofibular ligament. Am J Sports Med 42:405–411CrossRefPubMed Viens NA, Wijdicks CA, Campbell KJ, Laprade RF, Clanton TO (2014) Anterior talofibular ligament ruptures, Part 1: biomechanical comparison of augmented Broström repair techniques with the intact anterior talofibular ligament. Am J Sports Med 42:405–411CrossRefPubMed
37.
Zurück zum Zitat Waldrop NE, Wijdicks CA, Jansson KS, Laprade RF, Clanton TO (2012) Anatomic suture anchor versus the Broström technique for anterior talofibular ligament repair: a biomechanical comparison. Am J Sports Med 40:2590–2596CrossRefPubMed Waldrop NE, Wijdicks CA, Jansson KS, Laprade RF, Clanton TO (2012) Anatomic suture anchor versus the Broström technique for anterior talofibular ligament repair: a biomechanical comparison. Am J Sports Med 40:2590–2596CrossRefPubMed
38.
Zurück zum Zitat Waterman BR (2010) The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am 92:2279CrossRefPubMed Waterman BR (2010) The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am 92:2279CrossRefPubMed
39.
Zurück zum Zitat Wenny R, Duscher D, Meytap E, Weninger P, Hirtler L (2015) Dimensions and attachments of the ankle ligaments: evaluation for ligament reconstruction. Anat Sci Int 90:161–171CrossRefPubMed Wenny R, Duscher D, Meytap E, Weninger P, Hirtler L (2015) Dimensions and attachments of the ankle ligaments: evaluation for ligament reconstruction. Anat Sci Int 90:161–171CrossRefPubMed
40.
Zurück zum Zitat Ziai P, Benca E, Skrbensky GV, Wenzel F, Auffarth A, Krpo S, Windhager R, Buchhorn T (2015) The role of the medial ligaments in lateral stabilization of the ankle joint: an in vitro study. Knee Surg Sports Traumatol Arthrosc 23:1900–1906CrossRefPubMed Ziai P, Benca E, Skrbensky GV, Wenzel F, Auffarth A, Krpo S, Windhager R, Buchhorn T (2015) The role of the medial ligaments in lateral stabilization of the ankle joint: an in vitro study. Knee Surg Sports Traumatol Arthrosc 23:1900–1906CrossRefPubMed
41.
Zurück zum Zitat Ziai P, Benca E, von Skrbensky G, Graf A (2013) The role of the peroneal tendons in passive stabilisation of the ankle joint: an in vitro study. Knee Surgery Sports Traumatol Arthrosc 21:1404–1408CrossRef Ziai P, Benca E, von Skrbensky G, Graf A (2013) The role of the peroneal tendons in passive stabilisation of the ankle joint: an in vitro study. Knee Surgery Sports Traumatol Arthrosc 21:1404–1408CrossRef
Metadaten
Titel
Biomechanical stability of tape augmentation for anterior talofibular ligament (ATFL) repair compared to the native ATFL
verfasst von
M. Willegger
E. Benca
L. Hirtler
K. Hradecky
J. Holinka
R. Windhager
R. Schuh
Publikationsdatum
15.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 4/2016
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-016-4048-7

Weitere Artikel der Ausgabe 4/2016

Knee Surgery, Sports Traumatology, Arthroscopy 4/2016 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.