Skip to main content

Advertisement

Log in

LOXL1 deficiency negatively impacts the biomechanical properties of the mouse vagina and supportive tissues

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Mice deficient in lysyl oxidase-like1 protein (LOXL1−/−) develop pelvic organ prolapse (POP). We sought to determine the impact of LOXL1−/− on the biomechanical properties of the vagina and its supportive tissues tested as a complex. Tissues of nulliparous LOXL1−/− and age-matched wild type (WT) mice were tested to failure to obtain load-distension curves. Data were compared utilizing one-way analysis of variance and appropriate post hoc tests. The groups demonstrated different biomechanical behavior, with LOXL1−/− animals displaying a 31% decrease in ultimate load at failure (p=0.001). Experimental disruption of specific levels of support in WT mice failed to generate load-distension curves similar to the LOXL1−/− mice indicating a global instead of a site-specific tissue defect. The decrease in the ultimate load at failure in the LOXL1−/− mice suggests mechanically weaker tissues. LOXL1 mutation results in a global defect in connective tissues and correlates with altered biomechanical behavior of the vagina and supportive tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Subak LL, Waetjen LE, van den Eeden S, Thom DH, Vittinghoff E, Brown JS (2001) Cost of pelvic organ prolapse surgery in the United States. Obstet Gynecol 98:646–651

    Article  PubMed  CAS  Google Scholar 

  2. Swift S, Woodman P, O’Boyle A, Kahn M, Valley M, Bland D et al (2005) Pelvic Organ Support Study (POSST): the distribution, clinical definition, and epidemiologic condition of pelvic organ support defects. Am J Obstet Gynecol 192:795–806

    Article  PubMed  Google Scholar 

  3. Dietz H, Hansell N, Grace M, Eldridge A, Clarke B, Martin N (2005) Bladder neck mobility is a heritable trait. Br J Obstet Gynaecol 112:334–339

    CAS  Google Scholar 

  4. Goh JTW (2003) Biomechnical and biochemical assessments for pelvic organ prolapse. Curr Opin Obstet Gynecol 15:391–394

    Article  PubMed  Google Scholar 

  5. Moalli PA, Talarico LC, Sung VW, Klingensmith WL, Shand SH, Meyn LA, Watkins SC (2004) Impact of menopause on collagen subtypes in the arcus tendineous fasciae pelvis. Am J Obstet Gynecol 190:620–627

    Article  PubMed  CAS  Google Scholar 

  6. DeLancey JO, Morgan DM, Fenner DE, Kearney R, Guire K, Miller JM et al (2007) Comparison of levator ani muscle defects and function in women with and without pelvic organ prolapse. Obstet Gynecol 10:295–302

    Google Scholar 

  7. Carley ME, Schaffer J (2000) Urinary incontinence and pelvic organ prolapse in women with Marfan or Ehlers-Danlos syndrome. Am J Obstet Gynecol 182:1021–1023

    Article  PubMed  CAS  Google Scholar 

  8. Mattox TF, Bhatia NN (1996) The prevalence of urinary incontinence or prolapse among White and Hispanic women. Am J Obstet Gynecol 146:1255–1259

    Google Scholar 

  9. Gabriel B, Denschlag D, Gobel H, Fittkow C, Werner M, Gitsch G et al (2005) Uterosacral ligament in women with or without pelvic organ prolapse. Int Urogynecol J Pelvic Floor Dysfunct 16:475–479

    Article  PubMed  Google Scholar 

  10. Moalli PA, Shand SH, Zyczynski HM, Gordy SC, Meyn LA (2005) Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol 106:953–963

    PubMed  Google Scholar 

  11. Norton PA (1993) Pelvic floor disorders: the role of fascia and ligaments. Clin Obstet Gynecol 36:926–38

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto M, Yamamoto K, Akazawa S, Wakimoto TH, Aoyagi M (1997) Decrease in elastin gene expression and protein synthesis in fibroblasts derived from cardinal ligaments of patients with prolapsus uteri. Cell Biol Int 21:605–611

    Article  PubMed  CAS  Google Scholar 

  13. Starcher B, Percival S (1985) Elastin turnover in the rat uterus. Connect Tissue Res 13:207–215

    Article  PubMed  CAS  Google Scholar 

  14. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    PubMed  CAS  Google Scholar 

  15. Trask TM, Trask BC, Ritty TM, Abrams WR, Rosenbloom J, Mecham RP (2000) Interaction of tropoelastin with the amino-terminal domains of fibrillin-1 and fibrillin-2 suggests a role for the fibrillins in elastic fiber assembly. J Biol Chem 275(32):24400–24406

    Article  PubMed  CAS  Google Scholar 

  16. Tang C, Klinman JP (2001) The catalytic function of bovine lysyl oxidase in the absence of copper. J Biol Chem 276:30575–30578

    Article  PubMed  CAS  Google Scholar 

  17. Kagan HM, Li W (2003) Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88:660–672

    Article  PubMed  CAS  Google Scholar 

  18. Liu X, Zhao Y, Gao J, Pawlyk B, Starcher B, Spencer JA et al (2004) Elastic fiber homeostasis requires lysyl oxidase-like protein 1. Nat Genet 36:178–182

    Article  PubMed  CAS  Google Scholar 

  19. Liu X, Yun Z, Pawlyk B, Damaser M, Li T (2006) Failure of elastic fiber homeostasis leads to pelvic floor disorder. Am J Path 168:519–528

    Article  PubMed  CAS  Google Scholar 

  20. Hornstra IK, Birge S, Starcher B, Bailey AJ, Mecham RP, Shapiro SD (2003) Lysil oxidase is required for vascular and diaphragmatic development in mice. J Bio Chem 278:14387–14393

    Article  CAS  Google Scholar 

  21. DeLancey JO (1993) Anatomy and biomechanics of genital prolapse. Clin Obstet Gynecol 36:897–909

    Article  PubMed  CAS  Google Scholar 

  22. Moalli PA, Howden NS, Lowder JL, Navarro J, Debes KM, Abramowitch SD, Woo SL (2005) A rat model to study the structural properties of the vagina and its supportive tissues. Am J Obstet Gynecol 192:80–88

    Article  PubMed  Google Scholar 

  23. Drewes PG, Yanagisawa H, Starcher B, Hornstra I, Csiszar K, Marinis SI et al (2007) Pelvic organ prolapse in fibulin-5 knockout mice. Pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Path 170:578–589

    Article  PubMed  CAS  Google Scholar 

  24. Romanzi LJ, Chaikin DC, Blaivas JG (1999) The effect of genital prolapse on voiding. J Urol 161:581–586

    Article  PubMed  CAS  Google Scholar 

  25. Chen BH, Wen Y, Polan ML (2004) Elastolytic activity in women with stress urinary incontinence and pelvic organ prolapse. Neurourol Urodyn 23:119–126

    Article  PubMed  Google Scholar 

  26. Judge DP, Dietz HC (2005) Marfan’s syndrome. Lancet 366:1965–1976

    Article  PubMed  CAS  Google Scholar 

  27. Milewicz DM, Urban Z, Boyd C (2000) Genetic disorders of the elastic fiber system. Matrix Biology 19:471–480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Ian K. Hornstra, MD, for his generous donation of the LOXL1 knockout mice.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela A. Moalli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alperin, M., Debes, K., Abramowitch, S. et al. LOXL1 deficiency negatively impacts the biomechanical properties of the mouse vagina and supportive tissues. Int Urogynecol J 19, 977–986 (2008). https://doi.org/10.1007/s00192-008-0561-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-008-0561-7

Keywords

Navigation