Skip to main content
Erschienen in: International Urogynecology Journal 1/2016

Open Access 01.01.2016 | Original Article

Delivery-related risk factors for covert postpartum urinary retention after vaginal delivery

verfasst von: Femke E. M. Mulder, Katrien Oude Rengerink, Joris A. M. van der Post, Robert A. Hakvoort, Jan-Paul W. R. Roovers

Erschienen in: International Urogynecology Journal | Ausgabe 1/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Introduction and hypothesis

Postpartum urinary retention (PUR) is a common consequence of bladder dysfunction after vaginal delivery. Patients with covert PUR are able to void spontaneously but have a postvoid residual bladder volume (PVRV) of ≥150 mL. Incomplete bladder emptying may predispose to bladder dysfunction at a later stage of life. The aim of this cross-sectional study was to identify independent delivery-related risk factors for covert PUR after vaginal delivery in order to identify women with an increased risk of covert PUR.

Methods

The PVRV of women who delivered vaginally was measured after the first spontaneous micturition with a portable bladder-scanning device. A PVRV of 150 mL or more was defined as covert PUR. Independent risk factors for covert PUR were identified in multivariate regression analysis.

Results

Of 745 included women, 347 (47 %) were diagnosed with covert PUR (PVRV ≥150 mL), of whom 197 (26 %) had a PVRV ≥250 mL (75th percentile) and 50 (7 %) a PVRV ≥500 mL (95th percentile). In multivariate regression analysis, episiotomy (OR 1.7, 95 % CI 1.02 – 2.71), epidural analgesia (OR 2.08, 95 % CI 1.36 – 3.19) and birth weight (OR 1.03, 95 % CI 1.01 – 1.06) were independent risk factors for covert PUR. Opioid analgesia during labour (OR 3.19, 95 % CI 1.46 – 6.98), epidural analgesia (OR 3.54, 95 % CI 1.64 – 7.64) and episiotomy (OR 3.72, 95 % CI 1.71 – 8.08) were risk factors for PVRV ≥500 mL.

Conclusions

Episiotomy, epidural analgesia and birth weight are risk factors for covert PUR. We suggest that the current cut-off values for covert PUR should be reevaluated when data on the clinical consequences of abnormal PVRV become available.

Introduction

In the puerperium, postpartum urinary retention (PUR) is a common finding which gives an increased risk of persistent urinary retention [16]. Reported prevalences for overt (symptomatic) PUR range from 0.3 % to 4.7 %, i.e. the inability to void spontaneous within 6 h of vaginal delivery or removal of a catheter after a caesarean section [1, 7]. For covert (asymptomatic) PUR, defined as a postvoid residual volume (PVRV) of at least 150 mL after spontaneous micturition, prevalences of even up to 45 % have been reported [2].
Since Yip et al. proposed a distinction between overt and covert PUR in 1997 [1], many authors have adopted these definitions, which has led to a more consistent comparison between studies that deal with this common problem. The distinction between overt and covert PUR has clinical consequences. Women who are unable to micturate spontaneously within 6 h of delivery are categorized as having overt (symptomatic) urinary retention. Covert (asymptomatic) urinary retention is defined as the presence of a PVRV of more than 150 mL, detected by ultrasonography or by catheterization after spontaneous micturition.
Numerous studies have shown spontaneous recovery after several days to a normal PVRV in women with covert PUR [1, 5, 8, 9]. A recent systematic review on the adverse effects of PUR has shown that there is insufficient evidence to state that covert PUR is harmless [10]. However, it is known that over-distension of the bladder, even a single episode of over-distension, can lead to long-lasting voiding difficulties, recurrent urinary tract infections and, rarely, impaired renal function [1113]. Sometimes long-term catheterization may be indicated when retention persists or irreversible damage to the urogenital tract has occurred. Possibly, screening for covert PUR might be indicated to limit these risks.
This cross-sectional study was performed to identify risk factors for covert PUR.

Materials and methods

Between September 2010 and January 2013, data on the PVRV of women after vaginal delivery were collected in an academic hospital in The Netherlands. In this hospital, an average of 1,600 women per year give birth, with a caesarean section rate of 25 %, resulting in 1,200 vaginal deliveries each year. Women with an indication for prolonged catheterization because of their general condition (for example, severe pre-eclampsia or a retained placenta) were excluded, as well as women with a twin pregnancy. For women suffering severe fetomaternal pathology, eligibility was judged by the nurse who took care of the patient after the delivery. In women receiving epidural analgesia, the indwelling catheter was removed during the second stage of labour.
In participating women the first voided volume was measured. If micturition on a toilet was not possible, women were given the opportunity to void while showering. Within a maximum of 15 min after the first void the PVRV was measured with a portable noninvasive abdominal ultrasound device (Bladderscan® BVI 9400; Verathon Medical Europe, IJsselstein, The Netherlands). Nurses were trained in the appropriate use of the bladder-scanning device. The PVRV was recorded on the electronic patient chart as well as in a paper file. Potential clinical risk factors were identified based on literature [1, 14, 15] and were subsequently collected from (electronic) patient charts. The majority of the included factors are obligatory items on the patient chart, facilitating reliable documentation. In women diagnosed with covert PUR, PVRV was measured repeatedly until it was normal.
Clinical risk factors for the development of covert PUR were analysed using SPSS (IBM Statistics, version 20), with univariate regression analysis. Analysis was performed for a PVRV cut-off value of ≥150 mL, being the most common value in the literature. After identifying the 75th and 95th percentiles, analyses were also performed for the PVRV values related to these percentiles. Predictors with a p value <0.20 were included in a multivariate regression model. Associations between potential predictors and outcome are reported as odds ratios with 95 % confidence intervals. Since bladder scanning was part of standard postpartum care, no ethical approval was required.

Results

Between September 2010 and January 2013, data were obtained for 930 women, and the PVRV in 745 (80 %) of these women could be used in the analysis. No documentation of the PVRV was available in 165 women, and 20 women were excluded because they had a twin pregnancy. The patient characteristics are shown in Table 1. The mean age of the women was 31 years, their median parity was 2, and 13 % (94/745) underwent an instrumental delivery (all instrumental deliveries were vacuum extractions).
Table 1
Baseline characteristics of the 745 included women
Characteristic
Value
Maternal age (years), mean (range)
31 (16 – 46)
BMI (kg/m2), median (range)
24 (16 – 64)
Parity, median (range)
1.8 (1 – 8)
Spontaneous vaginal delivery, n (%)
651 (87)
Instrumental delivery, n (%)
94 (13)
Epidural analgesia, n (%)
141 (19)
Opioid analgesia, n (%)
121 (16)
Episiotomy, n (%)
131 (18)
The first voided volume was not measured routinely and not when the first void took place during showering, andthus was measured in 439 of the 745 women. In these 439 women the median first voided volume was 320 mL (range of 30 – 1,900 mL). The median PVRV was 140 mL (0 – 1,000 mL), and the 75th and 95th percentiles were 250 mL and 540 mL, respectively (Fig. 1). For ease of interpretation and use in practice the values used in the regression model were median 150 mL (value often used in previous studies), 75th percentile 250 mL and 95th percentile 500 mL as outcomes. Of the 745 women, 347 (47 %) were diagnosed with covert PUR (PVRV ≥150 mL), of whom 197 (26 %) had a PVRV ≥250 mL (75th percentile) and 50 (7 %) a PVRV ≥500 mL (95th percentile).
Table 2 shows the univariable regression analyses, using the 150 mL, 250 mL and 500 mL cut-off values. Primiparity, duration of labour, duration of the second stage of labour, opioid analgesia (i.e. intramuscular morphine or intravenous remifentanil), epidural analgesia, instrumental delivery, birth weight, vaginal tears requiring suturing, episiotomy and augmentation were univariably associated with covert PUR (PVRV ≥150 mL).
Table 2
Univariable regression analysis
Clinical factor
Number of women
PVRV ≥150 mL
PVRV ≥250 mL
PVRV ≥500 mL
OR
95 % CI
OR
95 % CI
OR
95 % CI
Maternal age (per year)
745
1.01
0.99 – 1.04
1.03
0.98 – 1.03
1.03
0.97 – 1.08
BMI (per kg/m2)
625
0.99
0.96 – 1.01
0.98
0.95 – 1.01
1.00
0.95 – 1.05
Primiparous (yes/no)
745
1.63
1.22 – 2.18
1.46
1.05 – 2.03
2.56
1.39 – 4.73
Duration of labour (per minute)
724
1.00
1.00 – 1.00
1.00
1.00 – 1.00
1.00
1.00 – 1.00
Duration of second stage (per minute)
738
1.01
1.01 – 1.02
1.01
1.01 – 1.02
1.01
1.00 – 1.02
Augmentation (yes/no)
745
1.30
0.97 – 1.73
1.20
0.87 – 1.67
1.17
0.65 – 2.08
Opioid analgesia (yes/no)
745
1.39
0.93 – 2.08
2.04
1.32 – 3.14
3.59
1.72 – 7.50
Epidural (yes/no)
745
2.57
1.75 – 3.77
2.08
1.41 – 3.06
2.88
1.57 – 5.26
Instrumental delivery (yes/no)
745
2.49
1.58 – 3.92
1.89
1.20 – 2.97
3.34
1.75 – 6.41
Birth weight (per 100 g)
744
1.04
1.01 – 1.06
1.05
1.02 – 1.07
1.03
0.99 – 1.08
Vaginal tears (yes/no)
745
1.58
1.17 – 2.14
1.46
1.03 – 2.07
3.26
1.50 – 7.04
Episiotomy (yes/no)
745
2.39
1.61 – 3.53
2.83
1.91 – 4.19
5.07
2.81 – 9.17
After selection of possible risk factors through univariable regression, multivariate analysis revealed epidural analgesia, birth weight and episiotomy as independent risk factors for PVRV ≥150 mL (Table 3). For the PVRV cut-off value of ≥250 mL, opioid analgesia, birth weight, epidural analgesia and episiotomy were risk factors. For the PVRV cut-off value of ≥500 mL, opioid analgesia, epidural analgesia and episiotomy were significant risk factors.
Table 3
Multivariable regression analysis including factors with p < 0.20 in the univariable analysis (Table 2; maternal age, BMI and augmentation were not included)
Clinical factor
PVRV ≥150 mL
PVRV ≥250 mL
PVRV ≥500 mL
OR
95 % CI
OR
95 % CI
OR
95 % CI
Primiparous (yes/no)
1.26
0.83 – 1.81
1.13
0.75 – 1.70
1.60
0.77 – 3.33
Duration of labour (per minute)
1.00
1.00 – 1.00
1.00
1.00 – 1.00
1.00
1.00 – 1.00
Duration of second stage (per minute)
1.00
1.00 – 1.01
1.01
1.00 – 1.01
1.00
0.98 – 1.01
Opioid analgesia (yes/no)
1.18
0.77 – 1.81
1.86*
1.18 – 2.94
3.19*
1.46 – 6.98
Epidural analgesia (yes/no)
2.08*
1.36 – 3.19
2.07*
1.32 – 3.26
3.54*
1.64 – 7.64
Instrumental delivery (yes/no)
1.35
0.78 – 2.34
0.85
0.48 – 1.49
1.15
0.52 – 2.52
Birth weight (per 100 g)
1.03*
1.01 – 1.06
1.04*
1.01 – 1.07
1.03
0.97 – 1.08
Vaginal tears (yes/no)
1.07
0.76 – 1.52
0.86
0.57 – 1.29
1.53
0.64 – 3.68
Episiotomy (yes/no)
1.67*
1.02 – 2.71
2.53*
1.53 – 4.20
3.72*
1.71 – 8.08
*P < 0.05

Discussion

This multivariate regression analysis showed that episiotomy, epidural analgesia and birth weight are independent risk factors for covert PUR (PVRV ≥150 mL). The 75th percentile of measured PVRV in all women was 250 mL; for this cut-off value, opioid analgesia, birth weight, epidural analgesia and episiotomy were identified as independent risk factors. Our applied lower limit of 150 mL for the diagnosis of covert PUR is in line with previous reports [1, 16]. The use of this cut-off value facilitates comparison with other studies [1, 8, 14]. Although this was a large cross-sectional study with data from over 700 women on covert PUR after vaginal delivery, some potential limitations need discussing.
First, selection bias may have occurred as women with complicated deliveries (i.e. extreme premature deliveries, postpartum haemorrhage, severe pre-eclampsia) were not always screened for PVRV. However, we have no reason to believe that voiding mechanisms would be different in this (small) group of woman with severe pregnancy-related complications and therefore believe our results can be generalized. In order to confirm our hypothesis, we plan to perform an external validation.
Second, the use of a Bladderscan as a technique for measuring PVRV has often been discussed. The validation studies that have been performed suggest that with such devices reliable measurements can be obtained directly after birth, while no statistically significant differences have been found between abdominal measurements and catheterization [1720]. In our department, a modern 3D model was used (Bladderscan BVI 9400) and the nursing staff was also extensively trained. Therefore, all measures were taken to achieve optimal reliability of measurements.
One of the largest studies concerning this subject is a recent study by Buchanan and Beckmann who found that primiparity and large perineal tears as well as caesarean section are independent predictors [8]. Although this was a large study it cannot be easily compared with ours due to a high percentage of women undergoing caesarean section and a relatively large number of women receiving regional anaesthesia. As no information was given in the previous study about catheter placement protocols, it is hard to compare the previous study with ours because we did not include women after caesarean section nor women who had received regional anaesthesia. However, the finding of perineal tears as a predictor is in line with the findings of our study and several others.
Because in our large cohort the median PVRV after the first void was 140 mL, the 75th percentile 250 mL and the 95th percentile 540 mL, we believe that the currently used definition proposed by Yip et al. should be reconsidered. While the classification of Yip et al. is based on the arbitrary PVRV of 150 mL in women who void at least 9 h after vaginal delivery, we feel that the definition of postpartum PUR should be related to the first postpartum void that occurs during the first hours after delivery.
Our study showed that opioid analgesia, epidural analgesia and episiotomy are risk factors for a PVRV that exceeds 500 mL. Although the exact pathophysiological background of PUR is still unclear, many hypotheses have been suggested, including anatomical changes [21], enlargement of bladder capacity [22] and hormonal changes during pregnancy [23]. Obviously, vaginal delivery is an anatomically and functionally traumatic event as it not only influences the anatomy and pelvic floor muscles [24] but also has effects on pudendal nerve conduction [25, 26] and possibly causes obstructive periurethral and vulval oedema. Our results showed that episiotomy, epidural analgesia and birth weight independently influence postpartum bladder function negatively. The (sutured) episiotomy as a predictor is likely to exert its effect through the development of pain and subsequent disturbance in bladder sensitivity and also central inhibition of bladder function [2729].
It is rational to assume that the more extreme change in anatomy that occurs in primiparous women is different from the change that occurs in the more adapted pelvic floor of multiparous women. It is likely that the first situation results in more pain. From this mechanical point of view, it is also likely that the birth of neonates with a larger birth weight can cause more trauma, subsequently resulting in a more painful delivery with eventually an inhibitory effect on bladder function. Last, the finding of epidural analgesia as a predictor of abnormal PVRV as an expression of decreased bladder function was not surprising [7, 30] as it directly affects (bladder) sensitivity and contractility.
These hypotheses could provide an explanation as to how these clinical factors cause an abnormal PVRV. Although several authors have shown that PVRV often normalizes spontaneously [1, 2, 5, 14] data on long-term and adverse effects are still missing. A recent systematic review on adverse effects of PUR has shown that there is insufficient evidence to state that covert PUR harmless [10]. Future research should therefore also focus on clinical consequences and long-term adverse effects related to the occurrence of covert PUR.

Conclusions

Episiotomy, epidural analgesia and birth weight are independent risk factors for covert PUR. We suggest that the current cut-off values for covert PUR should be reevaluated when data on the clinical consequences of abnormal PVRV become available.

Conflicts of interest

None.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

e.Med Urologie

Kombi-Abonnement

Mit e.Med Urologie erhalten Sie Zugang zu den urologischen CME-Fortbildungen und Premium-Inhalten der urologischen Fachzeitschriften.

Literatur
1.
Zurück zum Zitat Yip SK, Brieger G, Hin LY, Chung T (1997) Urinary retention in the post-partum period. The relationship between obstetric factors and the post-partum post-void residual bladder volume. Acta Obstet Gynecol Scand 76:667–672PubMedCrossRef Yip SK, Brieger G, Hin LY, Chung T (1997) Urinary retention in the post-partum period. The relationship between obstetric factors and the post-partum post-void residual bladder volume. Acta Obstet Gynecol Scand 76:667–672PubMedCrossRef
2.
Zurück zum Zitat Hee P, Lose G, Beier-Holgersen R, Engdahl E, Falkenlove P (1992) Postpartum voiding in the primiparous after vaginal delivery. Int Urogynecol J 3:95–99CrossRef Hee P, Lose G, Beier-Holgersen R, Engdahl E, Falkenlove P (1992) Postpartum voiding in the primiparous after vaginal delivery. Int Urogynecol J 3:95–99CrossRef
3.
Zurück zum Zitat Andolf E, Iosif CS, Jorgensen C, Rydhstrom H (1994) Insidious urinary retention after vaginal delivery: prevalence and symptoms at follow-up in a population-based study. Gynecol Obstet Invest 38:51–53PubMedCrossRef Andolf E, Iosif CS, Jorgensen C, Rydhstrom H (1994) Insidious urinary retention after vaginal delivery: prevalence and symptoms at follow-up in a population-based study. Gynecol Obstet Invest 38:51–53PubMedCrossRef
4.
Zurück zum Zitat Groutz A, Gordon D, Wolman I, Jaffa A, Kupferminc MJ, Lessing JB (2001) Persistent postpartum urinary retention in contemporary obstetric practice. Definition, prevalence and clinical implications. J Reprod Med 46:44–48PubMed Groutz A, Gordon D, Wolman I, Jaffa A, Kupferminc MJ, Lessing JB (2001) Persistent postpartum urinary retention in contemporary obstetric practice. Definition, prevalence and clinical implications. J Reprod Med 46:44–48PubMed
5.
Zurück zum Zitat Lee SN, Lee CP, Tang OS, Wong WM (1999) Postpartum urinary retention. Int J Gynaecol Obstet 66:287–288PubMedCrossRef Lee SN, Lee CP, Tang OS, Wong WM (1999) Postpartum urinary retention. Int J Gynaecol Obstet 66:287–288PubMedCrossRef
6.
Zurück zum Zitat Watson WJ (1991) Prolonged postpartum urinary retention. Mil Med 156:502–503PubMed Watson WJ (1991) Prolonged postpartum urinary retention. Mil Med 156:502–503PubMed
7.
Zurück zum Zitat Musselwhite KL, Faris P, Moore K, Berci D, King KM (2007) Use of epidural anesthesia and the risk of acute postpartum urinary retention. Am J Obstet Gynecol 196:472–475PubMedCrossRef Musselwhite KL, Faris P, Moore K, Berci D, King KM (2007) Use of epidural anesthesia and the risk of acute postpartum urinary retention. Am J Obstet Gynecol 196:472–475PubMedCrossRef
8.
Zurück zum Zitat Buchanan J, Beckmann M (2014) Postpartum voiding dysfunction: identifying the risk factors. Aust N Z J Obstet Gynaecol 54:41–45PubMedCrossRef Buchanan J, Beckmann M (2014) Postpartum voiding dysfunction: identifying the risk factors. Aust N Z J Obstet Gynaecol 54:41–45PubMedCrossRef
9.
Zurück zum Zitat Salemnic Y, Gold R, Toov JH, Jaffa A, Gordon D, Lessing J, Groutz A (2012) Prevalence, obstetric risk factors and natural history of asymptomatic postpartum urinary retention after first vaginal delivery-a prospective study of 200 primipara women. J Urol 187(4):e788CrossRef Salemnic Y, Gold R, Toov JH, Jaffa A, Gordon D, Lessing J, Groutz A (2012) Prevalence, obstetric risk factors and natural history of asymptomatic postpartum urinary retention after first vaginal delivery-a prospective study of 200 primipara women. J Urol 187(4):e788CrossRef
10.
Zurück zum Zitat Mulder FE, Hakvoort RA, Schoffelmeer MA, Limpens J, Van der Post JA, Roovers JP (2014) Postpartum urinary retention: a systematic review of adverse effects and management. Int Urogynecol J 25:1605–1612PubMedCrossRef Mulder FE, Hakvoort RA, Schoffelmeer MA, Limpens J, Van der Post JA, Roovers JP (2014) Postpartum urinary retention: a systematic review of adverse effects and management. Int Urogynecol J 25:1605–1612PubMedCrossRef
11.
Zurück zum Zitat Bross S, Schumacher S, Scheepe JR, Zendler S, Braun PM, Alken P, Junemann K (1999) Effects of acute urinary bladder overdistension on bladder response during sacral neurostimulation. Eur Urol 36:354–359PubMedCrossRef Bross S, Schumacher S, Scheepe JR, Zendler S, Braun PM, Alken P, Junemann K (1999) Effects of acute urinary bladder overdistension on bladder response during sacral neurostimulation. Eur Urol 36:354–359PubMedCrossRef
12.
Zurück zum Zitat Mustonen S, Ala-Houhala IO, Tammela TL (2001) Long-term renal dysfunction in patients with acute urinary retention. Scand J Urol Nephrol 35:44–48PubMedCrossRef Mustonen S, Ala-Houhala IO, Tammela TL (2001) Long-term renal dysfunction in patients with acute urinary retention. Scand J Urol Nephrol 35:44–48PubMedCrossRef
13.
Zurück zum Zitat Lewis JM, Yalla SV, Stanitski KE, Sullivan MP (2012) Spectrum of urodynamic abnormalities and renal function changes in adult men with non-neurogenic urinary retention. Neurourol Urodyn 31:544–548PubMedCrossRef Lewis JM, Yalla SV, Stanitski KE, Sullivan MP (2012) Spectrum of urodynamic abnormalities and renal function changes in adult men with non-neurogenic urinary retention. Neurourol Urodyn 31:544–548PubMedCrossRef
14.
Zurück zum Zitat Kekre AN, Vijayanand S, Dasgupta R, Kekre N (2011) Postpartum urinary retention after vaginal delivery. Int J Gynaecol Obstet 112:112–115PubMedCrossRef Kekre AN, Vijayanand S, Dasgupta R, Kekre N (2011) Postpartum urinary retention after vaginal delivery. Int J Gynaecol Obstet 112:112–115PubMedCrossRef
15.
Zurück zum Zitat Mulder F, Schoffelmeer M, Hakvoort R, Limpens J, Mol B, van der Post J, Roovers J (2012) Risk factors for postpartum urinary retention: a systematic review and meta-analysis. BJOG 119:1440–1446PubMedCrossRef Mulder F, Schoffelmeer M, Hakvoort R, Limpens J, Mol B, van der Post J, Roovers J (2012) Risk factors for postpartum urinary retention: a systematic review and meta-analysis. BJOG 119:1440–1446PubMedCrossRef
16.
Zurück zum Zitat Yip SK, Hin LY, Chung TK (1998) Effect of the duration of labor on postpartum postvoid residual bladder volume. Gynecol Obstet Invest 45:177–180PubMedCrossRef Yip SK, Hin LY, Chung TK (1998) Effect of the duration of labor on postpartum postvoid residual bladder volume. Gynecol Obstet Invest 45:177–180PubMedCrossRef
17.
Zurück zum Zitat Van Os AF, Van der Linden PJ (2006) Reliability of an automatic ultrasound system in the post partum period in measuring urinary retention. Acta Obstet Gynecol Scand 85:604–607PubMedCrossRef Van Os AF, Van der Linden PJ (2006) Reliability of an automatic ultrasound system in the post partum period in measuring urinary retention. Acta Obstet Gynecol Scand 85:604–607PubMedCrossRef
18.
Zurück zum Zitat Demaria F, Amar N, Biau D, Fritel X, Porcher R, Amarenco G, Madelenat P, Benifla JL (2004) Prospective 3D ultrasonographic evaluation of immediate postpartum urine retention volume in 100 women who delivered vaginally. Int Urogynecol J Pelvic Floor Dysfunct 15:281–285PubMed Demaria F, Amar N, Biau D, Fritel X, Porcher R, Amarenco G, Madelenat P, Benifla JL (2004) Prospective 3D ultrasonographic evaluation of immediate postpartum urine retention volume in 100 women who delivered vaginally. Int Urogynecol J Pelvic Floor Dysfunct 15:281–285PubMed
19.
Zurück zum Zitat Barrington JW, Edwards G, Ashcroft M, Adekanmi O (2001) Measurement of bladder volume following cesarean section using bladderscan. Int Urogynecol J Pelvic Floor Dysfunct 12:373–374PubMedCrossRef Barrington JW, Edwards G, Ashcroft M, Adekanmi O (2001) Measurement of bladder volume following cesarean section using bladderscan. Int Urogynecol J Pelvic Floor Dysfunct 12:373–374PubMedCrossRef
20.
Zurück zum Zitat Lukasse M, Cederkvist HR, Rosseland LA (2007) Reliability of an automatic ultrasound system for detecting postpartum urinary retention after vaginal birth. Acta Obstet Gynecol Scand 86:1251–1255PubMedCrossRef Lukasse M, Cederkvist HR, Rosseland LA (2007) Reliability of an automatic ultrasound system for detecting postpartum urinary retention after vaginal birth. Acta Obstet Gynecol Scand 86:1251–1255PubMedCrossRef
21.
Zurück zum Zitat Iosif S, Ingemarsson I, Ulmsten U (1980) Urodynamic studies in normal pregnancy and in puerperium. Am J Obstet Gynecol 137:696–700PubMedCrossRef Iosif S, Ingemarsson I, Ulmsten U (1980) Urodynamic studies in normal pregnancy and in puerperium. Am J Obstet Gynecol 137:696–700PubMedCrossRef
22.
Zurück zum Zitat Muellner SR (1939) Physiological bladder changes during pregnancy and the puerperium. J Urol 41:691–695 Muellner SR (1939) Physiological bladder changes during pregnancy and the puerperium. J Urol 41:691–695
23.
Zurück zum Zitat Liang CC, Lin YH, Chen TC, Chang SD (2014) How antepartum and postpartum acute urinary retention affects the function and structure of the rat bladder. Int Urogynecol J 25:1105–1113PubMedCrossRef Liang CC, Lin YH, Chen TC, Chang SD (2014) How antepartum and postpartum acute urinary retention affects the function and structure of the rat bladder. Int Urogynecol J 25:1105–1113PubMedCrossRef
24.
Zurück zum Zitat Snooks SJ, Swash M, Mathers SE, Henry MM (1990) Effect of vaginal delivery on the pelvic floor: a 5 years follow-up. Br J Surg 77:1358–1360PubMedCrossRef Snooks SJ, Swash M, Mathers SE, Henry MM (1990) Effect of vaginal delivery on the pelvic floor: a 5 years follow-up. Br J Surg 77:1358–1360PubMedCrossRef
25.
Zurück zum Zitat Lien KC, Morgan DM, DeLancey JO, Ashton-Miller JA (2005) Pudendal nerve stretch during vaginal birth: a 3D computer simulation. Am J Obstet Gynecol 192:1669–1676PubMedCrossRef Lien KC, Morgan DM, DeLancey JO, Ashton-Miller JA (2005) Pudendal nerve stretch during vaginal birth: a 3D computer simulation. Am J Obstet Gynecol 192:1669–1676PubMedCrossRef
26.
Zurück zum Zitat Sajadi KP, Lin DL, Steward JE, Balog B, Dissaranan C, Zaszczurynski P, Gill BC, Jiang HH, Kerns JM, Damaser MS (2012) Pudendal nerve stretch reduces external urethral sphincter activity in rats. J Urol 188:1389–1395PubMedCrossRef Sajadi KP, Lin DL, Steward JE, Balog B, Dissaranan C, Zaszczurynski P, Gill BC, Jiang HH, Kerns JM, Damaser MS (2012) Pudendal nerve stretch reduces external urethral sphincter activity in rats. J Urol 188:1389–1395PubMedCrossRef
27.
Zurück zum Zitat Blok BF, Sturms LM, Holstege G (1998) Brain activation during micturition in women. Brain 121(Pt 11):2033–2042PubMedCrossRef Blok BF, Sturms LM, Holstege G (1998) Brain activation during micturition in women. Brain 121(Pt 11):2033–2042PubMedCrossRef
28.
Zurück zum Zitat Morrison JF (1995) The excitability of the micturition reflex. Scand J Urol Nephrol Suppl 175:21–25PubMed Morrison JF (1995) The excitability of the micturition reflex. Scand J Urol Nephrol Suppl 175:21–25PubMed
29.
Zurück zum Zitat Tammela T (1995) Postoperative urinary retention – why the patient cannot void. Scand J Urol Nephrol Suppl 175:75–77PubMed Tammela T (1995) Postoperative urinary retention – why the patient cannot void. Scand J Urol Nephrol Suppl 175:75–77PubMed
30.
Zurück zum Zitat Anim-Somuah M, Smyth R, Howell C (2005) Epidural versus non-epidural or no analgesia in labour. Cochrane Database Syst Rev 4, CD000331PubMed Anim-Somuah M, Smyth R, Howell C (2005) Epidural versus non-epidural or no analgesia in labour. Cochrane Database Syst Rev 4, CD000331PubMed
Metadaten
Titel
Delivery-related risk factors for covert postpartum urinary retention after vaginal delivery
verfasst von
Femke E. M. Mulder
Katrien Oude Rengerink
Joris A. M. van der Post
Robert A. Hakvoort
Jan-Paul W. R. Roovers
Publikationsdatum
01.01.2016
Verlag
Springer London
Erschienen in
International Urogynecology Journal / Ausgabe 1/2016
Print ISSN: 0937-3462
Elektronische ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-015-2768-8

Weitere Artikel der Ausgabe 1/2016

International Urogynecology Journal 1/2016 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.