Skip to main content

Advertisement

Log in

Extracorporeal cardiac shock wave therapy for ischemic heart disease

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Prognosis of severe ischemic heart disease with no indication of percutaneous coronary intervention or coronary artery bypass grafting still remains poor. Extracorporeal shock wave therapy was introduced for medical therapy more than 20 years ago to break up kidney stones. We have demonstrated that extracorporeal cardiac shock wave therapy at a low level of ~10% of energy density that used for urinary lithotripsy treatment, effectively induces coronary angiogenesis and improves myocardial ischemia in a porcine model of chronic myocardial ischemia in vivo. On the basis of the promising results in animal studies, we have recently developed a new, non-invasive angiogenic therapy with low-energy shock waves for ischemic heart disease. Our extracorporeal cardiac shock wave therapy improved symptoms and myocardial ischemia in patients with severe coronary artery disease. These beneficial effects of the shock wave therapy persisted for at least 12 months. Importantly, no procedural complications or adverse effects were noted. These results indicate that our extracorporeal cardiac shock wave therapy is an effective and non-invasive treatment for ischemic heart disease. To further confirm the usefulness and safety of our SW therapy, we are currently conducting the second clinical trial in a randomized and placebo-controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jessup M. and Brozena S. (2003). Heart failure. N. Engl. J. Med. 348: 2007–2018

    Article  Google Scholar 

  2. Dimmeler S., Zeiher A.M. and Schneider M.D. (2005). Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115: 572–583

    Google Scholar 

  3. Forrester J.S., Price M.J. and Makkar R.R. (2003). Stem cell repair of infarcted myocardium: an overview for clinicians. Circulation 108: 1139–1145

    Article  Google Scholar 

  4. Mathur A. and Martin J.F. (2004). Stem cells and repair of the heart. Lancet 364: 183–192

    Article  Google Scholar 

  5. Nishida T., Shimokawa H., Oi K., Tatewaki H., Uwatoku T., Abe K., Matsumoto Y., Kajihara N., Eto M., Matsuda T., Yasui H., Takeshita A. and Sunagawa K. (2004). Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo. Circulation 110: 3055–3061

    Article  Google Scholar 

  6. Fukumoto Y., Ito A., Uwatoku T., Matoba T., Kishi T., Tanaka H., Takeshita A., Sunagawa K. and Shimokawa H. (2006). Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease. Coron. Artery Dis. 17: 63–70

    Article  Google Scholar 

  7. Uwatoku T., Ito K., Abe K., Oi K., Hizume T., Sunagawa K. and Shimokawa H. (2007). Extracorporeal cardiac shock wave therapy improves left ventricular remodeling after acute myocardial infarction in pigs. Coron. Artery Dis. 18: 397–404

    Article  Google Scholar 

  8. Haupt G., Haupt A., Ekkernkamp A., Gerety B. and Chvapil M. (1992). Influence of shock waves on fracture healing. Urology 39: 529–532

    Article  Google Scholar 

  9. Rompe J.D., Rumler F., Hopf C., Nafe B. and Heine J. (1995). Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin. Orthop. Relat. Res. 321: 196–201

    Google Scholar 

  10. Mariotto S., Cavalieri E., Amelio E., Ciampa A.R., Marlinghaus E., Russo S., Suzuki H. and Prati A.C. (2005). Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric. Oxide. 12: 89–96

    Article  Google Scholar 

  11. Maisonhaute E., Prado C., White P.C. and Compton R.G. (2002). Surface acoustic cavitation understood via nanosecond electrochemistry, part III: shear stress in ultrasonic cleaning. Ultrason Sonochem. 9: 297–303

    Article  Google Scholar 

  12. Apfel R.E. (1982). Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br. J. Cancer. 45(suppl): 140–146

    Google Scholar 

  13. Fisher A.B., Chien S., Barakat A.I. and Nerem R.M. (2001). Endothelial cellular response to altered shear stress. Am. J. Physiol. 281: L529–L533

    Google Scholar 

  14. Wang F.S., Wang C.J., Huang H.J., Chung H., Chen R.F. and Yang K.D. (2001). Physical shock wave mediates membrane hyperpolarization and Ras activation for osteogenesis in human bone marrow stromal cells. Biochem. Biophys. Res. Commun. 287: 648–655

    Article  Google Scholar 

  15. Gotte G., Amelio E., Russo S., Marlinghaus E., Musci G. and Suzuki H. (2002). Short-time non-enzymatic nitric oxide synthesis from L-arginine and hydrogen peroxide induced by shock waves treatment. FEBS Lett. 520: 153–155

    Article  Google Scholar 

  16. Seidl M., Steinbach P., Wörle K. and Hofstädter F. (1994). Induction of stress fibres and intercellular gaps in human vascular endothelium by shock-waves. Ultrasonics 32: 397–400

    Article  Google Scholar 

  17. Asahara T., Murohara T., Sullivan A., Silver M., Li T., Witzenbichler B., Schatteman G., Isner J.M. and Zee R. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967

    Article  Google Scholar 

  18. Rafii S. and Lyden D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat. Med. 9: 702–712

    Article  Google Scholar 

  19. Millauer B., Wizigmann-Voos S., Schnürch H., Martinez R., Møller N.P., Risau W. and Ullrich A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846

    Article  Google Scholar 

  20. Grunewald M., Avraham I., Dor Y., Bachar-Lustig E., Itin A., Jung S., Chimenti S., Landsman L., Abramovitch R. and Keshet E. (2006). VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124: 175–189

    Article  Google Scholar 

  21. Ceradini D.J., Kulkarni A.R., Callaghan M.J., Tepper O.M., Bastidas N., Kleinman M.E., Capla J.M., Galiano R.D., Levine J.P. and Gurtner G.C. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10: 858–864

    Article  Google Scholar 

  22. Askari A.T., Unzek S., Popovic Z.B., Goldman C.K., Forudi F., Kiedrowski M., Rovner A., Ellis S.G., Thomas J.D., DiCorleto P.E., Topol E.J. and Penn M.S. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362: 697–703

    Article  Google Scholar 

  23. Aicher A., Heeschen C., Sasaki K., Urbich C., Zeiher A.M. and Dimmeler S. (2006). Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia. Circulation 114: 2823–2830

    Article  Google Scholar 

  24. Auge B.K. and Preminger G.M. (2002). Update on shock wave lithotripsy technology. Curr. Opin. Urol. 12: 287–290

    Article  Google Scholar 

  25. Roukis T.S., Weil L.S., Borrelli A.H. and Weil L.S. (2002). Extracorporeal shock wave therapy for the treatment of chronic plantar fasciitis: indications, protocol, intermediate results, and a comparison of results to fasciotomy. J. Foot Ankle Surg. 41: 166–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shimokawa.

Additional information

Communicated by K. Takayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimokawa, H., Ito, K., Fukumoto, Y. et al. Extracorporeal cardiac shock wave therapy for ischemic heart disease. Shock Waves 17, 449–455 (2008). https://doi.org/10.1007/s00193-008-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0122-5

Keywords

PACS

Navigation