Skip to main content

Advertisement

Log in

MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) can regulate cell survival and death by targeting apoptosis-related gene expression. miR-210 is one of the most hypoxia-sensitive miRNAs. In this study, we evaluated the roles of miR-210 in hypoxia-induced insults to neural cells. Treatment of neuro-2a cells with oxygen/glucose deprivation (OGD) induced cell apoptosis in a time-dependent manner. In parallel, OGD time-dependently increased cellular miR-210 levels. Knocking down miR-210 expression using specific antisenses significantly attenuated OGD-induced neural apoptosis. Concurrently, OGD increased hypoxia-inducible factor (HIF)-1α mRNA and protein syntheses. Pretreatment with YC-1, an inhibitor of HIF-1α, reduced OGD-caused cell death. Sequentially, OGD specifically decreased antiapoptotic Bcl-2 mRNA and protein levels in neuro-2a cells. A search by a bioinformatic approach revealed that miR-210-specific binding elements exist in the 3′-untranslated region of Bcl-2 mRNA. Application of miR-210 antisenses simultaneously alleviated OGD-involved inhibition of Bcl-2 mRNA expression. In comparison, overexpression of miR-210 synergistically diminished OGD-caused inhibition of Bcl-2 mRNA expression and consequently induced greater cellular insults. Taken together, this study shows that OGD can induce miR-210 expression through activating HIF-1α. And miR-210 can mediate hypoxia-induced neural apoptosis by targeting Bcl-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Borden EC, Kluger H, Crowley J (2008) Apoptosis: a clinical perspective. Nat Rev Drug Discov 7:959

    Article  PubMed  CAS  Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J (2008) hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348

    Article  PubMed  CAS  Google Scholar 

  • Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083

    Article  PubMed  CAS  Google Scholar 

  • Chan DA, Krieg AJ, Turcotte S, Giaccia AJ (2007) HIF gene expression in cancer therapy. Methods Enzymol 435:323–345

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Chen TL, Cheh RM (2009) Cytoskeleton interruption in human hepatoma HepG2 cells induced by ketamine occurs possibly through suppression of calcium mobilization and mitochondrial function. Drug Metab Dispos 37:24–31

    Article  PubMed  CAS  Google Scholar 

  • Chang HC, Chen TG, Tai YT, Chen TL, Chiu WT, Chen RM (2011) Resveratrol attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells. J Cereb Blood Flow Metab 31:842–854

    Article  PubMed  CAS  Google Scholar 

  • Chen RM, Chen TL, Chiu WT, Chang CC (2005) Molecular mechanism of nitric oxide-induced osteoblast apoptosis. J Orthop Res 23:462–468

    Article  PubMed  CAS  Google Scholar 

  • Chen RM, Lin YL, Chou CW (2010) GATA-3 transduces survival signals in osteoblasts through upregulation of bcl-x L gene expression. J Bone Min Res 25:2193–2204

    Article  CAS  Google Scholar 

  • Cherng YG, Chang HC, Lin YL, Kuo ML, Chiu WT, Chen RM (2008) Apoptotic insults to human chondrocytes induced by nitric oxide are involved in sequential events, including cytoskeletal remodeling, phosphorylation of mitogen-activated protein kinase kinase kinase-1, and Bax-mitochondria-mediated caspase activation. J Orthop Res 26:1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Chesnut RM, Marshall LF, Klauber MR (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–322

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8:398–412

    Article  PubMed  CAS  Google Scholar 

  • Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883

    Article  PubMed  CAS  Google Scholar 

  • Fatemi A, Wilson MA, Johnston MV (2009) Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol 36:835–838

    Article  PubMed  Google Scholar 

  • Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS, Sorensen AG, Ivy P, Jain RK, Batchelor TT (2009) VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 6:229–236

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Le QT, Giaccia AJ (2010) MiR-210-micromanager of the hypoxia pathway. Trends Mol Med 16:230–237

    Article  PubMed  CAS  Google Scholar 

  • Ivan M, Harris AL, Martelli F, Kulshreshtha R (2008) Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 12:1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278:5–15

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187

    Article  PubMed  CAS  Google Scholar 

  • Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 7:134–153

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Haider HK, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via MIR-210 expression by targeting caspase-8 associated protein 2. J Biol Chem 284:33161–33168

    Article  PubMed  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik S, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  PubMed  CAS  Google Scholar 

  • Lee ST, Wu TT, Yu PY, Chen RM (2009) Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway. Br J Anaesth 102:80–89

    Article  PubMed  CAS  Google Scholar 

  • Lee CJ, Tai YT, Lin YL, Chen RM (2010) Molecular mechanisms of propofol-involved suppression of nitric oxide biosynthesis and inducible nitric oxide synthase gene expression in lipopolysaccharide-stimulated macrophage-like Raw 264.7 cells. Shock 33:93–100

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Chang HC, Chen TL, Chang JH, Chiu WT, Chen RM (2010) Resveratrol protects against oxidized LDL-induced breakage of the blood-brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J Nutr 140:2187–2192

    Article  PubMed  CAS  Google Scholar 

  • Lingsma HF, Roozenbeek B, Steyerberg EW, Murray GD, Maas AI (2010) Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol 9:543–554

    Article  PubMed  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (2009) Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  Google Scholar 

  • Mathew LK, Simon MC (2009) mir-210: a sensor for hypoxic stress during tumorigenesis. Mol Cell 35:737–738

    Article  PubMed  CAS  Google Scholar 

  • Mazzeo AT, Bullock R (2007) Monitoring brain tissue oximetry: will it change management of critically ill neurologic patients? J Neurol Sci 261:1–9

    Article  PubMed  Google Scholar 

  • Merino D, Bouillet P (2009) The Bcl-2 family in autoimmune and degenerative disorders. Apoptosis 14:570–583

    Article  PubMed  CAS  Google Scholar 

  • Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer–new paradigms in molecular oncology. Curr Opin Cell Biol 21:470–479

    Article  PubMed  CAS  Google Scholar 

  • Pang JC, Kwok WK, Chen Z, Ng HK (2009) Oncogenic role of microRNAs in brain tumors. Acta Neuropathol 117:599–611

    Article  PubMed  CAS  Google Scholar 

  • Pirzadeh A, Mammen A, Kubin J, Reade E, Liu H, Mendoza A, Greeley WJ, Wilson DF, Pastuszko A (2011) Early regional response of apoptotic activity in newborn piglet brain following hypoxia and ischemia. Neurochem Res 36:83–92

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2000) Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106:809–812

    Article  PubMed  CAS  Google Scholar 

  • Tai YT, Cherng YG, Chang CC, Hwang YP, Chen JT, Chen RM (2007) Pretreatment with low nitric oxide protects osteoblasts from high nitric oxide-induced apoptotic insults through regulation of c-Jun N-terminal kinase/c-Jun-mediated Bcl-2 gene expression and protein translocation. J Orthop Res 25:625–635

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  • Walls KC, Ghosh AP, Ballestas ME, Klocke BJ, Roth KA (2009) bcl-2/Adenovirus E1B 19-kd interacting protein 3 (BNIP3) regulates hypoxia-induced neural precursor cell death. J Neuropathol Exp Neurol 68:1326–1338

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Yao Y, Jiang X, Xiong Y, Mu D (2006) Expression of Nogo-A and NgR in the developing rat brain after hypoxia-ischemia. Brain Res 1114:212–220

    Article  PubMed  CAS  Google Scholar 

  • Wu GJ, Chen TL, Ueng YF, Chen RM (2008) Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation. Toxicol Appl Pharmacol 228:105–113

    Article  PubMed  CAS  Google Scholar 

  • Yin KJ, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y, Chen YE (2010) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30:6398–6408

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, Burchard J, Dai X, Chang AN, Diaz RL, Marszalek JR, Bartz SR, Carleton M, Cleary MA, Linsley PS, Grandori C (2009) MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8:2756–2768

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the Chi-Mei Medical Center (100CM-TMU-13-2), the Department of Health (DOH101-TD-C-111-008), and the National Science Council (98-2314-B-038-002-MY3), Taipei, Taiwan. The authors express their gratitude to Ms. Yi-Ling Lin and Ms. Ivy Tsai for technical support and data collection during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruei-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chio, CC., Lin, JW., Cheng, HA. et al. MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 87, 459–468 (2013). https://doi.org/10.1007/s00204-012-0965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0965-5

Keywords

Navigation