Skip to main content
Log in

HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Heat shock protein 70 (HSP70) has been shown to be a substrate of Polo-like kinase 1 (PLK1), and it prevents cells arrested in mitosis by arsenic trioxide (ATO) from dying. Here, we report that HSP70 participates in ATO-induced spindle elongation, which interferes with mitosis progression. Our results demonstrate that HSP70 and PLK1 colocalize at the centrosome in ATO-arrested mitotic cells. HSP70 located at the centrosome was found to be phosphorylated by PLK1 at Ser631 and Ser633. Moreover, unlike wild-type HSP70 (HSP70wt) and its phosphomimetic mutant (HSP70SS631,633DD), a phosphorylation-resistant mutant of HSP70 (HSP70SS631,633AA) failed to localize at the centrosome. ATO-induced spindle elongation was abolished in cells overexpressing HSP70SS631,633AA. Conversely, mitotic spindles in cells ectopically expressing HSP70SS631,633DD were more resistant to nocodazole-induced depolymerization than in those expressing HSP70wt or HSP70SS631,633AA. In addition, inhibition of PLK1 significantly reduced HSP70 phosphorylation and induced early onset of apoptosis in ATO-arrested mitotic cells. Taken together, our results indicate that PLK1-mediated phosphorylation and centrosomal localization of HSP70 may interfere with spindle dynamics and prevent apoptosis of ATO-arrested mitotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATO:

Arsenic trioxide

HSP70:

Heat shock protein 70

MT:

Microtubule

PES:

2-Phenylethynesulfonamide

PLK1:

Polo-like kinase 1

References

  • Agueli C, Geraci F, Giudice G, Chimenti L, Cascino D, Sconzo G (2001) A constitutive 70 kDa heat-shock protein is localized on the fibres of spindles and asters at metaphase in an ATP-dependent manner: a new chaperone role is proposed. Biochem J 360(Pt 2):413–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmad S, Ahuja R, Venner TJ, Gupta RS (1990) Identification of a protein altered in mutants resistant to microtubule inhibitors as a member of the major heat shock protein (hsp70) family. Mol Cell Biol 10(10):5160–5165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11(8):545–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 10(4):265–275

    Article  CAS  PubMed  Google Scholar 

  • Bahassi EM (2011) Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med (Maywood) 236(6):648–657

    Article  CAS  Google Scholar 

  • Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106(21):8471–8476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brinker A, Scheufler C, Von Der Mulbe F et al (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 × Hop × Hsp90 complexes. J Biol Chem 277(22):19265–19275

    Article  CAS  PubMed  Google Scholar 

  • Buczynski G, Slepenkov SV, Sehorn MG, Witt SN (2001) Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants. J Biol Chem 276(29):27231–27236

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Yu Y, Huang Y et al (2003) Arsenic trioxide-induced mitotic arrest and apoptosis in acute promyelocytic leukemia cells. Leukemia 17(7):1333–1337

    Article  CAS  PubMed  Google Scholar 

  • Casenghi M, Meraldi P, Weinhart U, Duncan PI, Korner R, Nigg EA (2003) Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev Cell 5(1):113–125

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Lin YP, Chow LP, Lee TC (2011) Proteomic identification of Hsp70 as a new Plk1 substrate in arsenic trioxide-induced mitotically arrested cells. Proteomics 11:4331–4345

    Article  CAS  PubMed  Google Scholar 

  • Chien CW, Ho IC, Lee TC (2009) Induction of neoplastic transformation by ectopic expression of human aldo-keto reductase 1C isoforms in NIH3T3 cells. Carcinogenesis 30:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • de Thé H, Chen Z (2010) Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10(11):775–783

    Article  PubMed  Google Scholar 

  • Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderón-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177:132–148

    Article  PubMed  Google Scholar 

  • Dumont S, Mitchison TJ (2009) Force and length in the mitotic spindle. Curr Biol 19(17):R749–R761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evens AM, Tallman MS, Gartenhaus RB (2004) The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future. Leuk Res 28:891–900

    Article  CAS  PubMed  Google Scholar 

  • Fabbro M, Zhou BB, Takahashi M et al (2005) Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell 9(4):477–488

    Article  CAS  PubMed  Google Scholar 

  • Flaherty KM, Wilbanks SM, DeLuca-Flaherty C, McKay DB (1994) Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. J Biol Chem 269(17):12899–12907

    CAS  PubMed  Google Scholar 

  • Frohling S, Dohner H (2008) Chromosomal abnormalities in cancer. N Engl J Med 359(7):722–734

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Scholey JM (2010) Control of mitotic spindle length. Ann Rev Cell Dev Biol 26:21–57

    Article  CAS  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86(11–12):377–384

    Article  CAS  PubMed  Google Scholar 

  • Halicka HD, Smolewski P, Darzynkiewicz Z, Dai W, Traganos F (2002) Arsenic trioxide arrests cells early in mitosis leading to apoptosis. Cell Cycle 1(3):201–209

    Article  CAS  PubMed  Google Scholar 

  • Huang S-C, Lee T-C (1998) Arsenite-induced mitotic arrest in HeLa S3 cells. Carcinogenesis 19:889–896

    Article  CAS  PubMed  Google Scholar 

  • Huang S-C, Huang C-YF, Lee T-C (2000) Induction of mitosis-mediated apoptosis by sodium arsenite in HeLa S3 cells. Biochem Pharmacol 60:771–780

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hut HM, Kampinga HH, Sibon OC (2005) Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities. Mol Biol Cell 16(8):3776–3785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johmura Y, Soung NK, Park JE et al (2011) Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc Natl Acad Sci U S A 108(28):11446–11451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakadiya R, Wu YC, Dong H et al (2011) Novel 2-substituted quinolin-4-yl-benzenesulfonate derivatives: synthesis, antiproliferative activity, and inhibition of cellular tubulin polymerization. ChemMedChem 6(6):1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kishi K, van Vugt MA, Okamoto K, Hayashi Y, Yaffe MB (2009) Functional dynamics of polo-like kinase 1 at the centrosome. Mol Cell Biol 29(11):3134–3150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K-J, Hahn GM (1988) Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite. J Cell Physiol 136:411–420

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Rhee K (2011) PLK1 phosphorylation of pericentrin initiates centrosome maturation at the onset of mitosis. J Cell Biol 195(7):1093–1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee TC, Oshimura M, Barrett JC (1985) Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis 6:1421–1426

    Article  CAS  PubMed  Google Scholar 

  • Leu JI, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36:15–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li YM, Broome JD (1999) Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res 59:776–780

    CAS  PubMed  Google Scholar 

  • Ling Y-H, Jiang J-D, Holland JF, Perez-Soler R (2002) Arsenic trioxide produces polymerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines. Mol Pharmacol 62:529–538

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Hilsenbeck S, Gazitt Y (2003) Arsenic trioxide-induced apoptosis in myeloma cells: p53-dependent G1 or G2/M cell cycle arrest, activation of caspase-8 or caspase-9, and synergy with APO2/TRAIL. Blood 101(10):4078–4087

    Article  CAS  PubMed  Google Scholar 

  • Liu XS, Li H, Song B, Liu X (2010) Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep 11(8):626–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Macurek L, Lindqvist A, Lim D et al (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455(7209):119–123

    Article  CAS  PubMed  Google Scholar 

  • Mahen R, Jeyasekharan AD, Barry NP, Venkitaraman AR (2011) Continuous polo-like kinase 1 activity regulates diffusion to maintain centrosome self-organization during mitosis. Proc Natl Acad Sci U S A 108(22):9310–9315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makhnevych T, Houry WA (2013) The control of spindle length by Hsp70 and Hsp110 molecular chaperones. FEBS Lett 587(8):1067–1072

    Article  CAS  PubMed  Google Scholar 

  • Makhnevych T, Wong P, Pogoutse O et al (2012) Hsp110 is required for spindle length control. J Cell Biol 198(4):623–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchesi VT, Ngo N (1993) In vitro assembly of multiprotein complexes containing alpha, beta, and gamma tubulin, heat shock protein HSP70, and elongation factor 1 alpha. Proc Natl Acad Sci U S A 90(7):3028–3032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNeely SC, Belshoff AC, Taylor BF et al (2008a) Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest. Toxicol Appl Pharmacol 229(2):252–261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNeely SC, Taylor BF, States JC (2008b) Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent. Toxicol Appl Pharmacol 231(1):61–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62(14):3893–3903

    CAS  PubMed  Google Scholar 

  • Mogilner A, Wollman R, Civelekoglu-Scholey G, Scholey J (2006) Modeling mitosis. Trends Cell Biol 16(2):88–96

    Article  CAS  PubMed  Google Scholar 

  • Perret E, Moudjou M, Geraud ML, Derancourt J, Soyer-Gobillard MO, Bornens M (1995) Identification of an HSP70-related protein associated with the centrosome from dinoflagellates to human cells. J Cell Sci 108(Pt 2):711–725

    CAS  PubMed  Google Scholar 

  • Petronczki M, Lenart P, Peters JM (2008) Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell 14(5):646–659

    Article  CAS  PubMed  Google Scholar 

  • Ramírez P, Eastmond DA, Laclette JP, Ostrosky-Wegman P (1997) Disruption of microtubule assembly and spindle formation as a mechanism for the induction of aneuploid cells by arsenite and vanadium pentoxide. Mutat Res 386:291–298

    Article  PubMed  Google Scholar 

  • Rattner JB (1991) hsp70 is localized to the centrosome of dividing HeLa cells. Exp Cell Res 195(1):110–113

    Article  CAS  PubMed  Google Scholar 

  • Rossi MR, Somji S, Garrett S, Sens MA, Nath J, Sens DA (2002) Expression of hsp27, hsp60, hsc70, and hsp70 stress response genes in cultured human urothelial cells (UROtsa) exposed to lethal and sublethal concentrations of sodium arsenite. Environ Health Perspect 110:1225–1232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez C, Padilla R, Paciucci R, Zabala JC, Avila J (1994) Binding of heat-shock protein 70 (hsp70) to tubulin. Arch Biochem Biophys 310(2):428–432

    Article  CAS  PubMed  Google Scholar 

  • Santamaria A, Wang B, Elowe S et al (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10(1):M110 004457

    Article  PubMed Central  PubMed  Google Scholar 

  • Savitski MM, Lemeer S, Boesche M et al (2011) Confident phosphorylation site localization using the mascot delta score. Mol Cell Proteomics 10(2):M110003830

    Article  Google Scholar 

  • Silver JT, Noble EG (2012) Regulation of survival gene hsp70. Cell Stress Chaperones 17(1):1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Slepenkov SV, Patchen B, Peterson KM, Witt SN (2003) Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release. Biochemistry 42(19):5867–5876

    Article  CAS  PubMed  Google Scholar 

  • Smith E, Hegarat N, Vesely C et al (2011) Differential control of Eg5-dependent centrosome separation by Plk1 and Cdk1. EMBO J 30(11):2233–2245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soung NK, Park JE, Yu LR et al (2009) Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev Cell 16(4):539–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • States JC, Reiners JJ Jr, Pounds JG et al (2002) Arsenite disrupts mitosis and induces apoptosis in SV40-transformed human skin fibroblasts. Toxicol Appl Pharmacol 180(2):83–91

    Article  CAS  PubMed  Google Scholar 

  • Syljuasen RG, Jensen S, Bartek J, Lukas J (2006) Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66(21):10253–10257

    Article  CAS  PubMed  Google Scholar 

  • Taylor BF, McNeely SC, Miller HL, Lehmann GM, McCabe MJ Jr, States JC (2006) p53 suppression of arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1. J Pharmacol Exp Ther 318(1):142–151

    Article  CAS  PubMed  Google Scholar 

  • Taylor BF, McNeely SC, Miller HL, States JC (2008) Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization. Toxicol Appl Pharmacol 230(2):235–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truman AW, Kristjansdottir K, Wolfgeher D et al (2012) CDK-dependent Hsp70 Phosphorylation controls G1 cyclin abundance and cell-cycle progression. Cell 151(6):1308–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai CF, Wang YT, Chen YR et al (2008) Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7(9):4058–4069

    Article  CAS  PubMed  Google Scholar 

  • Uehara R, Goshima G (2010) Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. J Cell Biol 191(2):259–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van de Weerdt BC, Medema RH (2006) Polo-like kinases: a team in control of the division. Cell Cycle 5(8):853–864

    Article  PubMed  Google Scholar 

  • van Vugt MA, Gardino AK, Linding R et al (2010) A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol 8(1):e1000287

    Article  PubMed Central  PubMed  Google Scholar 

  • Vidair CA, Huang RN, Doxsey SJ (1996) Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int J Hyperth 12(5):681–695

    Article  CAS  Google Scholar 

  • Wu YC, Yen WY, Yih LH (2008) Requirement of a functional spindle checkpoint for arsenite-induced apoptosis. J Cell Biochem 105:678–687

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Yen WY, Lee TC, Yih LH (2009) Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis. Toxicol Appl Pharmacol 236:231–238

    Article  CAS  PubMed  Google Scholar 

  • Yih L-H, Lee T-C (1999) Effects of exposure protocols on induction of kinetochore-plus and -minus micronuclei by arsenite in diploid human fibroblasts. Mutat Res 440:75–82

    Article  CAS  PubMed  Google Scholar 

  • Yih LH, Lee TC (2003) Induction of c-anaphase and diplochromosome through dysregulation of spindle assembly checkpoint by sodium arsenite in human fibroblasts. Cancer Res 63:6680–6688

    CAS  PubMed  Google Scholar 

  • Yih L-H, Ho I-C, Lee T-C (1997) Sodium arsenite disturbs mitosis and induces chromosome loss in human fibroblasts. Cancer Res 57:5051–5059

    CAS  PubMed  Google Scholar 

  • Yih LH, Tseng YY, Wu YC, Lee TC (2006) Induction of centrosome amplification during arsenite-induced mitotic arrest in CGL-2 cells. Cancer Res 66:2098–2106

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen Q, Feng J et al (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the gammaTuRC to the centrosome. J Cell Sci 122(Pt 13):2240–2251

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shao H, Huang Y et al (2011) PLK1 phosphorylates mitotic centromere-associated kinesin and promotes its depolymerase activity. J Biol Chem 286(4):3033–3046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF et al (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272(5268):1606–1614

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen Z, Lallemand-Breitenbach V, de Thé H (2002) How acute promyelocytic leukemia revived arsenic. Nat Rev Cancer 2:705–714

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Academia Sinica and grants from the National Health Research Institutes (NHRI-EX96-9522BI to T.C.L.) and the National Science Council (NSC98-2320-B-001-002-MY3 to T.C.L., NSC98-2320-B-002-030 to L.P.C., and NSC99-2320-B-001-008-MY3 to L. H. Y.), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Huei Yih or Te-Chang Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YJ., Lai, KC., Kuo, HH. et al. HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch Toxicol 88, 1711–1723 (2014). https://doi.org/10.1007/s00204-014-1222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1222-x

Keywords

Navigation