Skip to main content

Advertisement

Log in

PEGylation of ORMOSIL nanoparticles differently modulates the in vitro toxicity toward human lung cells

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

ORganically MOdified SILica (ORMOSIL) nanoparticles (NPs) appear promising carriers for the delivery of drugs to target tissues but concerns on possible cytotoxic effects exist. Here, we studied the in vitro responses to ORMOSIL NPs in different types of human lung cells to determine the effects of polyethylene glycol (PEG) coating on NP cytotoxicity. Non-PEG NPs caused a concentration-dependent decrease of viability of all types of cells, while PEG NPs induced deleterious effects and death in carcinoma alveolar type II A549 cells but not in CCD-34Lu fibroblasts and NCI-H2347 adenocarcinoma cells. Reactive oxygen species were detected in cells incubated with PEG NPs, but their deactivation by superoxide dismutase and catalase did not protect A549 cells from death, suggesting that the oxidative stress was not the main determinant of cytotoxicity. Only in A549 cells PEG NPs modulated the transcription of genes involved in inflammation, signal transduction and cell death. Transmission electron microscopy evidenced a unique intracellular localization of PEG NPs in the lamellar bodies of A549 cells, which could be the most relevant factor leading to cytotoxicity by reducing the production of surfactant proteins and by interfering with the pulmonary surfactant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhtar MJ, Ahamed M, Kumar S et al (2010) Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276:95–102

    Article  CAS  PubMed  Google Scholar 

  • Andreeva AV, Kutuzov MA, Voyno-Yasenetskaya TA (2007) Regulation of surfactant secretion in alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 293:L259–L271

    Article  CAS  PubMed  Google Scholar 

  • Berridge MV, Tan AS, McCoy KD, Wang R (1996) The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 4:14–19

    Google Scholar 

  • Blechinger J, Bauer AT, Torrano AA et al (2013) Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small 9:3970–3980

    Article  CAS  PubMed  Google Scholar 

  • Bouzas V, Haller T, Hobi N et al (2014) Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology 8:813–828

    Article  CAS  PubMed  Google Scholar 

  • Card JW, Zeldin DC, Bonner JC, Nestmann ER (2008) Pulmonary applications and toxicity of engineered nanoparticles. Am J Physiol Lung Cell Mol Physiol 295:400–411

    Article  Google Scholar 

  • Chang JS, Chang KLB, Hwang DF, Kong ZL (2007) In vitro cytotoxicity of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41:2064–2068

    Article  CAS  PubMed  Google Scholar 

  • Choi SJ, Oh JM, Choy JH (2009) Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. J Inorg Biochem 103:463–471

    Article  CAS  PubMed  Google Scholar 

  • Chow AH, Tong HH, Chattopadhyay P, Shekunov BY (2007) Particle engineering for pulmonary drug delivery. Pharm Res 24:411–437

    Article  CAS  PubMed  Google Scholar 

  • Clift MJD, Varet J, Hankin SM et al (2011) Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology 5:664–674

    Article  CAS  PubMed  Google Scholar 

  • Compagnin C, Baù L, Mognato M et al (2009) The cellular uptake of meta-tetra(hydroxyphenyl)chlorin entrapped in organically modified silica nanoparticles is mediated by serum proteins. Nanotechnology 20:345101

    Article  PubMed  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticles therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  CAS  PubMed  Google Scholar 

  • Davoren M, Herzog E, Casey A et al (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438–448

    Article  CAS  PubMed  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Drescher D, Orts-Gil G, Laube G et al (2011) Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal Bional Chem 440:1367–1373

    Article  Google Scholar 

  • Fan Q, Wang YE, Zhao X, Loo JSC, Zuo YY (2011) Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 8:6410–6416

    Article  Google Scholar 

  • Fede C, Selvestrel F, Compagnin C et al (2012) The toxicity outcome of silica nanoparticles (Ludox®) is influenced by testing techniques and treatment modalities. Anal Bional Chem 404:1789–1802

    Article  CAS  Google Scholar 

  • Foster KA, Oster CG, Mayer MM, Avery ML, Audus KL (1998) Characterization of the A549 cell lines as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243:359–366

    Article  CAS  PubMed  Google Scholar 

  • Gyenge EB, Darphin X, Wirth A et al (2012) Uptake and fate of surface modified silica nanoparticles in head and neck squamous cell carcinoma. J Nanobiotechnol 9:32–46

    Article  Google Scholar 

  • Horie M, Kato H, Iwahashi H (2013) Cellular effects of manufactured nanoparticles: effect of adsorption ability of nanoparticles. Arch Toxicol 87:771–781

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Aronstam RS, Chen DR, Huang YW (2010a) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24:45–55

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Teng X, Chen D, Tang F, He J (2010b) The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 31:438–448

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Jain SK (2008) PEGylation: an approach for drug delivery. A review. Crit Rev Ther Drug Carrier Syst 25:403–447

    Article  CAS  PubMed  Google Scholar 

  • Kasper J, Hermanns MI, Bantz C et al (2013) Interactions of silica nanoparticles with lung epithelial cells and the association to flotilins. Arch Toxicol 87:1053–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Dhawan A (2013) Genotoxic and carcinogenic potential of engineered nanoparticles: and update. Arch Toxicol 87:1883–1900

    Article  CAS  PubMed  Google Scholar 

  • Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 7:5845–5857

    Article  Google Scholar 

  • Liu X, Sun J (2010) Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials 31:8198–8209

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mano SS, Kanehira K, Sonezaki S, Taniguchi A (2012) Effect of polyethylene glycol modification of TiO2 nanoparticles on cytotoxicity and gene expressions in human cell lines. Int J Mol Sci 13:3703–3717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S (2011) Nanoparticles: molecular targets and cell signaling. Arch Toxicol 85:733–741

    Article  CAS  PubMed  Google Scholar 

  • Mohamed BM, Verma NK, Prina-Mello A et al (2011) Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. J Nanobiotechnol 9:29

    Article  CAS  Google Scholar 

  • Mühlfeld C, Rothen-Rutishauser B, Blank F, Vanhecke D, Ochs M, Gehr P (2008) Interactions of nanoparticles with pulmonary structure and cellular responses. Am J Physiol Lung Cell Mol Physiol 294:817–819

    Article  Google Scholar 

  • Nabeshi H, Yoshikaea T, Matsuyama K et al (2011) Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8:1–10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of nanomaterials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Panas A, Marquardt C, Nalcaci O et al (2013) Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 7:259–273

    Article  CAS  PubMed  Google Scholar 

  • Rampazzo E, Bonacchi S, Juris R et al (2010) Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores. J Phys Chem B 114:14605–14613

    Article  CAS  PubMed  Google Scholar 

  • Rio-Echevarria IM, Selvestrel F, Segat D et al (2010) Highly PEGylated silica nanoparticles: “ready to use” stealth functional nanocarriers. J Mater Chem 20:2780–2787

    Article  CAS  Google Scholar 

  • Rojnik M, Kocbek P, Moret F et al (2012) In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomedicine 7:663–677

    Article  CAS  PubMed  Google Scholar 

  • Sachan AK, Harishchandra RK, Bantz C, Maskos M, Reichelt R, Galla HJ (2012) High-resolution investigation of nanoparticle interaction with a model of pulmonary surfactant monolayer. ACS Nano 2:1677–1687

    Article  Google Scholar 

  • Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Schle C, Mühlfeld C, Pulskamp K et al (2009) The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure. Resp Res 10:90

    Article  Google Scholar 

  • Segat D, Tavano R, Donini M et al (2011) Proinflammatory effects of bare and PEGylated ORMOSIL-, PLGA-, and SUV-NPs on monocytes and PMNs and their modulation by f-MLP. Nanomedicine 6:1027–1046

    Article  CAS  PubMed  Google Scholar 

  • Selvestrel F, Moret F, Segat D et al (2013) Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale 5:6106–6116

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10:3223–3230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Shi T, Duffin R et al (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222:141–151

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Manshian B, Jenkins GJS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  PubMed  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Ad Drug Del Rev 60:1278–1288

    Article  CAS  Google Scholar 

  • Tavano R, Segat D, Reddi E et al (2010) Procoagulant properties of bare and highly-PEGylated vinyl-modified silica nanoparticles. Nanomedicine 5:881–896

    Article  CAS  PubMed  Google Scholar 

  • Ungaro F, D’Angelo I, Miro A, La Rotonda MI, Quaglia F (2012) Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J Pharm Pharmacol 64:1217–1235

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Petersen NO (2013) Lipid-coated gold nanoparticles promote lamellar body formation in A549 cells. Biochim Biophys Acta 1831:1089–1097

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Fang X, Liang W (2012) Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano 6:5018–5030

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Liu J, He H et al (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ye SF, Wu YH, Hou ZQ, Zhang QQ (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379:643–648

    Article  CAS  PubMed  Google Scholar 

  • Zarogouldis P, Karamanos NK, Porpodis K et al (2012) Vectors for inhaled gene therapy in lung cancer. Application for nano oncology and safety of bio nanotechnology. Int J Mol Sci 13:10828–10862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 201031 NANOPHOTO and from Italian Ministry of Research (FIRB 2011, RBAP114AMK RINAME). We thank Dr. C. De Pittà (University of Padova) for the submission to GEO of the microarray data and Dr. E. Rampazzo (University of Bologna) for the generous gift of the rhodamine silane derivative. Microarray analysis was performed by CRIBI Gene Expression Service (MicroCribi, http://microcribi.cribi.unipd.it) of the University of Padova. The acquisition of the SEM and TEM images was performed by the electron microscopy service of the Department of Biology of University of Padova.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Reddi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moret, F., Selvestrel, F., Lubian, E. et al. PEGylation of ORMOSIL nanoparticles differently modulates the in vitro toxicity toward human lung cells. Arch Toxicol 89, 607–620 (2015). https://doi.org/10.1007/s00204-014-1273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1273-z

Keywords

Navigation