Skip to main content

Advertisement

Log in

Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Astrocytes, the largest cell population in the human brain, are powerful inflammatory effectors. Several studies have examined the interaction of activated astrocytes with neurons, but little is known yet about human neurotoxicity under such situations and about strategies of neuronal rescue. To address this question, immortalized murine astrocytes (IMA) were combined with human LUHMES neurons and stimulated with an inflammatory (TNF, IL-1) cytokine mix (CM). Neurotoxicity was studied both in co-cultures and in monocultures after transfer of conditioned medium from activated IMA. Interventions with >20 drugs were used to profile the model system. Control IMA supported neurons and protected them from neurotoxicants. Inflammatory activation reduced this protection, and prolonged exposure of co-cultures to CM triggered neurotoxicity. Neither the added cytokines nor the release of NO from astrocytes were involved in this neurodegeneration. The neurotoxicity-mediating effect of IMA was faithfully reproduced by human astrocytes. Moreover, glia-dependent toxicity was also observed, when IMA cultures were stimulated with CM, and the culture medium was transferred to neurons. Such neurotoxicity was prevented when astrocytes were treated by p38 kinase inhibitors or dexamethasone, whereas such compounds had no effect when added to neurons. Conversely, treatment of neurons with five different drugs, including resveratrol and CEP1347, prevented toxicity of astrocyte supernatants. Thus, the sequential IMA-LUHMES neuroinflammation model is suitable for separate profiling of both glial-directed and directly neuroprotective strategies. Moreover, direct evaluation in co-cultures of the same cells allows for testing of therapeutic effectiveness in more complex settings, in which astrocytes affect pharmacological properties of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

DA:

Dopaminergic

MPP+ :

1-Methyl-4-phenyl-pyridinium

PARP:

Poly-(ADP-ribose)-polymerase

PLO:

Poly-l-ornithine

GDNF:

Glial-derived neurotrophic factor

IMA:

Immortalized mouse astrocytes

LDH:

Lactate dehydrogenase

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

GSH:

Glutathione

GSSG:

l-Glutathione oxidized

DHQ:

1,5-Isoquinolinediol

CEP1347:

(3,9-Bis[(ethylthio)methyl]-K-252a)

ROCK:

Rho kinase

DM:

Differentiation medium

DAT:

Dopamine transporter

LUHMES:

Lund human mesencephalic cells

TNF-α:

Tumor necrosis factor alpha

IL-1β:

Interleukin-1 beta

IFN-γ:

Interferon gamma

CM:

Cytokine mix

CCM:

Complete cytokine mix

L-NNA:

Nω-nitro-l-arginine

CNS:

Central nerve system

VMAT2:

Vesicular monoamine transporter

TH:

Tyrosine hydroxylase

NHA:

Normal human astrocytes

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

IkB:

NF-kappa-B inhibitor beta

COX2:

Cyclooxygenase-2

NOS:

Nitric oxide synthase

cAMP:

Cyclic adenosine monophosphate

NEP:

Neuroepithelial cells

mAGES:

Mouse astrocytes generated from embryonic stem cells

SNpc:

Substantia nigra pars compacta

LPS:

Lipopolysaccharides

NSE:

Neuron-specific enolase

References

  • Allen NJ, Barres BA (2009) Glia—more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  • Avendano BC, Montero TD, Chavez CE, von Bernhardi R, Orellana JA (2015) Prenatal exposure to inflammatory conditions increases Cx43 and Panx1 unopposed channel opening and activation of astrocytes in the offspring effect on neuronal survival. Glia 63(11):2058–2072

    Article  Google Scholar 

  • Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci Off J Soc Neurosci 21(17):6480–6491

    CAS  Google Scholar 

  • Bal-Price A, Moneer Z, Brown GC (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40(3):312–323

    Article  PubMed  Google Scholar 

  • Bi F, Huang C, Tong J, Qiu G, Huang B, Wu Q et al (2013) Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci USA 110:4069–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biber K, Owens T, Boddeke E (2014) What is microglia neurotoxicity (not)? Glia 62:841–854

    Article  PubMed  Google Scholar 

  • Biesmans S, Acton PD, Cotto C, Langlois X, Ver Donck L, Bouwknecht JA et al (2015) Effect of stress and peripheral immune activation on astrocyte activation in transgenic bioluminescent Gfap-luc mice. Glia 63:1126–1137

    Article  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Bodea LG, Wang Y, Linnartz-Gerlach B, Kopatz J, Sinkkonen L, Musgrove R et al (2014) Neurodegeneration by activation of the microglial complement-phagosome pathway. J Neurosci 34:8546–8556

    Article  PubMed  Google Scholar 

  • Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41:242–247

    Article  CAS  PubMed  Google Scholar 

  • Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79:77–89

    Article  CAS  PubMed  Google Scholar 

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  Google Scholar 

  • Carbone M, Duty S, Rattray M (2012) Riluzole neuroprotection in a Parkinson’s disease model involves suppression of reactive astrocytosis but not GLT-1 regulation. BMC Neurosci 13:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo J, Dávalos A, Alvarez-Sabín J, Pumar JM, Leira R et al (2002) Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 58:624–629

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610

    Article  CAS  PubMed  Google Scholar 

  • Cipriani S, Desjardins CA, Burdett TC, Xu Y, Xu K, Schwarzschild MA (2012) Protection of dopaminergic cells by urate requires its accumulation in astrocytes. J Neurochem 123:172–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodla MC, Mumaw J, Stice SL (2010) Role of astrocytes, soluble factors, cells adhesion molecules and neurotrophins in functional synapse formation: implications for human embryonic stem cell derived neurons. Curr Stem Cell Res Ther 5:251–260

    Article  CAS  PubMed  Google Scholar 

  • Efremova L, Schildknecht S, Adam M, Pape R, Gutbier S, Hanf B et al (2015) Prevention of human dopaminergic neurodegeneration in an astrocytes co-culture system allowing endogenous drug metabolism. Br J Pharmacol 172:4119–4132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falsig J, Latta M, Leist M (2004a) Defined inflammatory states in astrocyte cultures: correlation with susceptibility towards CD95-driven apoptosis. J Neurochem 88:181–193

    Article  CAS  PubMed  Google Scholar 

  • Falsig J, Porzgen P, Lotharius J, Leist M (2004b) Specific modulation of astrocyte inflammation by inhibition of mixed lineage kinases with CEP-1347. J Immunol 173:2762–2770

    Article  CAS  PubMed  Google Scholar 

  • Falsig J, Porzgen P, Lund S, Schrattenholz A, Leist M (2006) The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. J Neurochem 96:893–907

    Article  CAS  PubMed  Google Scholar 

  • Falsig J, van Beek J, Hermann C, Leist M (2008) Molecular basis for detection of invading pathogens in the brain. J Neurosci Res 86:1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Di Monte D, Langston JW (1992) Astrocytes and Parkinson’s disease. Prog Brain Res 94:429–436

    Article  CAS  PubMed  Google Scholar 

  • Gallardo G, Barowski J, Ravits J, Siddique T, Lingrel JB, Robertson J et al (2014) An alpha2-Na/K ATPase/alpha-adducin complex in astrocytes triggers non-cell autonomous neurodegeneration. Nat Neurosci 17:1710–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Gantner F, Leist M, Kusters S, Vogt K, Volk HD, Tiegs G (1996) T cell stimulus-induced crosstalk between lymphocytes and liver macrophages results in augmented cytokine release. Exp Cell Res 229:137–146

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Chen H, Schwarzschild MA, Ascherio A (2011) Use of ibuprofen and risk of Parkinson disease. Neurology 76:863–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2:e167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gegg ME, Clark JB (1036) Heales, SJ (2005) Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Res 1–2:1–6

    Google Scholar 

  • Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551

    Article  PubMed  Google Scholar 

  • Guizzetti M, Moore NH, Giordano G, Costa LG (2008) Modulation of neuritogenesis by astrocyte muscarinic receptors. J Biol Chem 283:31884–31897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Patani R, Baxter P, Serio A, Story D, Tsujita T et al (2012) Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms. Cell Death Differ 19:779–787

    Article  CAS  PubMed  Google Scholar 

  • Hansson O, Castilho RF, Kaminski Schierle GS, Karlsson J, Nicotera P, Leist M et al (2000) Additive effects of caspase inhibitor and lazaroid on the survival of transplanted rat and human embryonic dopamine neurons. Exp Neurol 164:102–111

    Article  CAS  PubMed  Google Scholar 

  • Hashioka S, McGeer EG, Miyaoka T, Wake R, Horiguchi J, McGeer PL (2015) Interferon-gamma-induced neurotoxicity of human astrocytes. CNS Neurol Disord: Drug Targets 14(2):251–256

    Article  CAS  Google Scholar 

  • Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14(7):463–477

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  Google Scholar 

  • Henn A, Kirner S, Leist M (2011) TLR2 hypersensitivity of astrocytes as functional consequence of previous inflammatory episodes. J Immunol 186:3237–3247

    Article  CAS  PubMed  Google Scholar 

  • Hunter RL, Cheng B, Choi DY, Liu M, Liu S, Cass WA et al (2009) Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J Neurosci Res 87:1913–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • In’T Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T et al (2001) Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345:1515–1521

    Article  Google Scholar 

  • Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39:167–180

    Article  CAS  PubMed  Google Scholar 

  • Krug AK, Gutbier S, Zhao L, Poltl D, Kullmann C, Ivanova V et al (2014) Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis 5:e1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuegler PB, Baumann BA, Zimmer B, Keller S, Marx A, Kadereit S et al (2012) GFAP-independent inflammatory competence and trophic functions of astrocytes generated from murine embryonic stem cells. Glia 60:218–228

    Article  PubMed  Google Scholar 

  • Kurkowska-Jastrzebska I, Litwin T, Joniec I, Ciesielska A, Przybylkowski A, Czlonkowski A et al (2004) Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson’s disease. Int Immunopharmacol 4:1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533–2545

    Article  CAS  PubMed  Google Scholar 

  • Lee M, McGeer E, Kodela R, Kashfi K, McGeer PL (2013a) NOSH-aspirin (NBS-1120), a novel nitric oxide and hydrogen sulfide releasing hybrid, attenuates neuroinflammation induced by microglial and astrocytic activation: a new candidate for treatment of neurodegenerative disorders. Glia 61(10):1724–1734

    Article  PubMed  Google Scholar 

  • Lee M, McGeer E, McGeer PL (2013b) Neurotoxins released from interferon-gamma-stimulated human astrocytes. Neuroscience 229:164–175

    Article  CAS  PubMed  Google Scholar 

  • Lindholm P, Voutilainen MH, Lauren J, Peranen J, Leppanen VM, Andressoo JO et al (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448:73–77

    Article  CAS  PubMed  Google Scholar 

  • Lioy DT, Garg SK, Monaghan CE, Raber J, Foust KD, Kaspar BK et al (2011) A role for glia in the progression of Rett’s syndrome. Nature 475:497–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS et al (2015) Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells 33:1036–1041

    Article  PubMed  Google Scholar 

  • Ma D, Jin S, Li E, Doi Y, Parajuli B, Noda M et al (2013) The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol 254:10–18

    Article  CAS  PubMed  Google Scholar 

  • Mander P, Borutaite V, Moncada S, Brown GC (2005) Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death. J Neurosci Res 79(1–2):208–215

    Article  CAS  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Barger SW, Furukawa K, Bruce AJ, Wyss-Coray T, Mark RJ et al (1997) Cellular signaling roles of TGF beta, TNF alpha and beta APP in brain injury responses and Alzheimer’s disease. Brain Res Brain Res Rev 23:47–61

    Article  CAS  PubMed  Google Scholar 

  • Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI et al (2014) Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 20:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros R, LaFerla FM (2013) Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol 239:133–138

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10(5):615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orre M, Kamphuis W, Osborn LM, Jansen AH, Kooijman L, Bossers K et al (2014) Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction. Neurobiol Aging 35:2746–2760

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Wilhelmsson U, Bogestal YR, Pekna M (2007) The role of astrocytes and complement system in neural plasticity. Int Rev Neurobiol 82:95–111

    Article  CAS  PubMed  Google Scholar 

  • Pizzurro DM, Dao K, Costa LG (2014) Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione. Toxicology 318:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puschmann TB, Zanden C, De Pablo Y, Kirchhoff F, Pekna M, Liu J et al (2013) Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia 61:432–440

    Article  PubMed  Google Scholar 

  • Rees K, Stowe R, Patel S, Ives N, Breen K, Clarke CE et al (2011) Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database Syst Rev. doi:10.1002/14651858.CD008454

    PubMed Central  Google Scholar 

  • Robel S, Berninger B, Gotz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88–104

    Article  CAS  PubMed  Google Scholar 

  • Ruitenberg A, Kalmijn S, de Ridder MA, Redekop WK, van Harskamp F, Hofman A et al (2001) Prognosis of Alzheimer’s disease: the Rotterdam Study. Neuroepidemiology 20:188–195

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom von Tobel J, Zoia D, Althaus J, Antinori P, Mermoud J, Pak HS et al (2014) Immediate and delayed effects of subchronic Paraquat exposure during an early differentiation stage in 3D-rat brain cell cultures. Toxicol Lett 230:188–197

    Article  CAS  PubMed  Google Scholar 

  • Schildknecht S, Kirner S, Henn A, Gasparic K, Pape R, Efremova L et al (2012) Characterization of mouse cell line IMA 2.1 as a potential model system to study astrocyte functions. Altex Altern Anim Exp 29:261–274

    Google Scholar 

  • Scholz D, Poltl D, Genewsky A, Weng M, Waldmann T, Schildknecht S et al (2011) Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 119:957–971

    Article  CAS  PubMed  Google Scholar 

  • Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    CAS  PubMed  Google Scholar 

  • Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  • Simon BM, Malisan F, Testi R, Nicotera P, Leist M (2002) Disialoganglioside GD3 is released by microglia and induces oligodendrocyte apoptosis. Cell Death Differ 9:758–767

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Valenza M, Marullo M, Di Paolo E, Cesana E, Zuccato C, Biella G et al (2015) Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington’s disease. Cell Death Differ 22:690–702

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  CAS  PubMed  Google Scholar 

  • Walker DG, Kim SU, McGeer PL (1998) Expression of complement C4 and C9 genes by human astrocytes. Brain Res 809(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A et al (2012) Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 287:21384–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward RJ, Colivicchi MA, Allen R, Schol F, Lallemand F, de Witte P, Ballini C et al (2009) Neuro-inflammation induced in the hippocampus of ‘binge drinking’ rats may be mediated by elevated extracellular glutamate content. J Neurochem 111:1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q et al (2014) Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum Mol Genet 23:2968–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Doerenkamp-Zbinden Foundation, the Land BW, the DFG (RTG1331; KoRS-CB), the BMBF, and University of Konstanz funds.

Author’s contribution

Liudmila Efremova and Petra Chovancova performed most experiments, analyzed data, and wrote the manuscript; Stefan Schildknecht, Martina Adam, and Simon Gutbier performed experiments and proofread the manuscript; Marcel Leist designed experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Leist.

Additional information

Liudmila Efremova and Petra Chovancova have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremova, L., Chovancova, P., Adam, M. et al. Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Arch Toxicol 91, 231–246 (2017). https://doi.org/10.1007/s00204-016-1702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1702-2

Keywords

Navigation