Skip to main content

Advertisement

Log in

Local effects and mechanisms of antiarrhythmic peptide AAP10 in acute regional myocardial ischemia: electrophysiological and molecular findings

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Previously, it was shown that antiarrhythmic peptides and our lead substance AAP10 enhance electrical intercellular communication via gap junctions. Now, we wanted to elucidate whether AAP10 acts preferably in the ischemic area and the molecular mechanism of this peptide. Seventeen rabbit hearts were isolated, perfused according to Langendorff, and submitted to 30-min local ischemia by LAD occlusion with/without AAP10 (50 nM). Electrophysiology was assessed by 256 channel epicardial mapping. Finally, the ischemic zone, border zone, and non-ischemic zone were excised, and the cardiac gap junction protein connexin43 (Cx43), its phosphorylation state, and the distribution at the polar and lateral membrane of cardiomyocytes were determined by Western blot and immunofluorescence. Ischemia led to a decrease in activation recovery interval (ARI) homogeneity, which could be completely prevented by AAP10. Moreover, ischemia-induced activation wave slowing in the ischemic border zone was antagonized by AAP10. In ischemic center and border zone, but not in the non-ischemic area, (phospho-Cx43/dephospho-Cx43)-ratio decreased. This was also significantly antagonized by AAP10. Serine 368 was identified as one phosphorylation site for the activity of AAP10. In the non-ischemic area, AAP10 had no influence on Cx43 phosphorylation state. Interestingly, ischemia led to a loss of Cx43 from the cell poles and lateral sides in the ischemic area and border zone. AAP10 completely prevented the ischemia-induced decrease in polar Cx43 presence. In the ischemic area, AAP10 prevents from ischemia-induced Cx43 dephosphorylation and loss of Cx43 from the gap junction at cell poles and in parallel prevents the decrease in ARI homogeneity and attenuates ischemia-induced slowing of activation wave propagation. The AAP10 action seems confined to the ischemic area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Axelsen LN, Stahlhut M, Shabaz M, Larsen BD, Nielesen MS, Holstein-Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: a possible target for antiarrhythmic peptide analogue rotigaptide (ZP123). J Moll Cell Cardiol 40:790–798

    Article  CAS  Google Scholar 

  • Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kléber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    PubMed  CAS  Google Scholar 

  • Burt JM (1987) Block of intercellular communication: interaction of intercellular H+ and Ca2+. Am J Physiol 352:C607–C612

    Google Scholar 

  • Crow DS, Beyer EC, Paul DL, Kobe SS, Lau AF (1990) Phosphorylation of connexin43 gap junction protein in uninfected and Rous sarcoma virus-transformed mammalian fibroblasts. Mol Cell Biol 10:1754–1763

    PubMed  CAS  Google Scholar 

  • Dekker LR, Fiolet JW, Van Buval E, Coronel R, Opthof T, Spaan JA, Janse MJ (1996) Intracellular Ca2+, intercellular electrical coupling, and mechanical activity in ischemic rabbit papillary muscle: effects of preconditioning and metabolic blockade. Circ Res 79:237–246

    PubMed  CAS  Google Scholar 

  • Dhein S (2006) Cardiac ischemia and uncoupling: gap junctions in ischemia and infarction. In: Dhein S (ed) Cardiovascular gap junctions, vol 42. Karger, Basel, pp 198–212

    Chapter  Google Scholar 

  • Dhein S, Rutten P, Klaus W (1988) A new method for analysing the geometry and timecourse of epicardial potential spreading. Int J Biomed Computing 23:201–207

    Article  CAS  Google Scholar 

  • Dhein S, Müller A, Klaus W (1990) Nifedipine antagonizes oubain-induced ST-segment changes and derangement of epicardial activation pattern in isolated rabbit hearts. Int J Cardiol 29:163–172

    Article  PubMed  CAS  Google Scholar 

  • Dhein S, Müller A, Gerwin R, Klaus W (1993) Comparative study on the proarrhythmic effects of some class I antiarrhythmic agents. Circulation 87:617–631

    PubMed  CAS  Google Scholar 

  • Dhein S, Manicome N, Müller A, Gerwin R, Ziskoven U, Irankhani A, Minke C, Klaus W (1994) A new synthetic peptide reduces dispersion of epicardial activation recovery interval and diminishes alterations of epicardial activation patterns induced by regional ischemia. A mapping study. Naunyn Schmiedeberg’s Arch Pharmacol 350:174–184

    Article  CAS  Google Scholar 

  • Dhein S, Weng S, Grover R, Tudyka T, Gottwald M, Schaefer T, Polontschouk L (2001) Protein kinase Ca mediates the effect of antiarrhythmic peptide on gap junction conductance. Cell Commun Adhesion 8:257–264

    Article  CAS  Google Scholar 

  • Dhein S, Mohr FW, Delmar M (2005) Practical methods in cardiovascular research. Springer, Heidelberg

    Google Scholar 

  • Durrer D, Van der Tweel LH (1954) Spread of activation in the left ventricular wall of the dog. Activation conditions at the epicardial surface. Am Heart J 47:192–203

    Article  PubMed  CAS  Google Scholar 

  • Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL (1991) Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N Engl J Med 324:781–788

    PubMed  CAS  Google Scholar 

  • Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498–1505

    Article  PubMed  CAS  Google Scholar 

  • Grover R, Dhein S (2001) Structure–activity relationships of novel peptides related to the antiarrhythmic peptide AAP10 which reduces the dispersion of epicardial action potential duration. Peptides 22(7):1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka K, Kawata H, Toyofuku T, Yoshida K (2004) Down-regulation of Connexin43 in early Myocardial ischemia and protective effect by ischemic preconditioning in rat heart in vivo. Jpn Heart J 45:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg EL, Saez JC, Corpina RA, Roy C, Kessler JA (2000) Use of antibodies in the analysis of connexin43 turnover and phosphorylation. Methods 20:129–139

    Article  PubMed  CAS  Google Scholar 

  • Jain SK, Schuessler RB, Saffitz JE (2003) Mechanisms of delayed electrical uncoupling induced ischemic preconditioning. Circ Res 92:1138–1144

    Article  PubMed  CAS  Google Scholar 

  • Jeyaraman M, Tanguy S, Fandrich RR, Lukas A, Kardami E (2003) Ischemia-induced dephosphorylation of cardiomyocyte connexin-43 is reduced by okadaic acid and calyculin A but not fostiecin. Mol Cell Bioch 242:129–134

    Article  CAS  Google Scholar 

  • Kaprielian RR, Gunning M, Dupont E, Sheppard MN, Rothery SM, Underwood R, Pennell DJ, Fox K, Pepper J, Poole-Wilson PA, Severs NJ (1998) Down-regulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hiberbation in the human left ventricle. Circulation 97:651–660

    PubMed  CAS  Google Scholar 

  • Kjolbye AL, Dikshteyn M, Eloff BC, Deschênes I, Rosenbaum D (2008) Maintenance of intercellular coupling by the antiarrhythmic peptide rotigaptide suppresses arrhythmogenic discordant alternans. Am J Physiol 294:H41–H49

    CAS  Google Scholar 

  • Kleber AG, Janse MJ, van Capelle FJL, Durrer D (1978) Mechanism and time course of ST and TQ segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circ Res 42:603–613

    PubMed  CAS  Google Scholar 

  • Lesh MD, Pring M, Spear JF (1989) Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modelling study. Circ Res 65:1426–1440

    PubMed  CAS  Google Scholar 

  • Massey KD, Minnich BH, Burt JM (1993) Arachidonic acid and lipoxygenase metabolites uncouple neonatal rat cardiac myocyte pairs. Am J Physiol 263:C494–C501

    Google Scholar 

  • Millar CK, Kralios FA, Lux RL (1985) Correlation between refractory periods and activation recovery intervals from electrograms: effects of rate and adrenergic interventions. Circulation 72:1372–1379

    PubMed  CAS  Google Scholar 

  • Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 286:H214–H221

    Article  PubMed  CAS  Google Scholar 

  • Musil LS, Cunningham BA, Edelman GM, Goodenough DA (1990) Differential phosphorylation of gap junction protein connexin43 in junctional communication-competent and deficient cell lines. J Cell Biol 111:2077–2088

    Article  PubMed  CAS  Google Scholar 

  • Müller A, Dhein S (1993) Sodium channel blockade enhances dispersion of the cardiac action potential duration. A computer simulation study. Basic Res Cardiol. 88:11–22

    PubMed  Google Scholar 

  • Müller A, Schaefer T, Gottwald M, Tudyka T, Linke W, Klaus W, Dhein S (1997a) Effect on the antiarrhythmic peptide AAP10 on cellular coupling. Naunyn Schmiedeberg’s Arch Pharmacol 356:76–82

    Article  Google Scholar 

  • Müller A, Gottwald M, Tudyka T, Linke W, Klaus W, Dhein S (1997b) Increase in gap junction conductance by an antiarrhythmic peptide. Eur J Pharmacol 327:65–72

    Article  PubMed  Google Scholar 

  • Nacarelli GV, Wolbrette DL, Patel HM, Luck JC (2000) Amiodarone: clinical trials. Curr Opin Cardiol 15:64–72

    Article  Google Scholar 

  • Nagy JI, Li WE, Roy C, Doble BW, Gilchrist JS, Kardami E, Hertzberg EL (1997) Selective monoclonal antibodies recognition and cellular localisation of an unphosphorylated form of connexin43. Exp Cell Res 236:127–136

    Article  PubMed  CAS  Google Scholar 

  • Polontchouk L, Haefliger JA, Ebelt B, Schaefer T, Stuhlmann D, Mehlhorn U, Kuhn-Regnier F, De Vivie ER, Dhein S (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 38(3):883–891

    Article  PubMed  CAS  Google Scholar 

  • Saffitz JE, Corr PB, Sobel BE (1993) Arrhythmogenesis and ventricular dysfunction after myocardial infarction. Is anomalous cellular coupling the elusive link? Circulation 87:1742–1745

    PubMed  CAS  Google Scholar 

  • Schneider K (2005) Anaesthesia of laboratory animals. In: Dhein S, Mohr FW, Delmar M (eds) Practical methods in cardiovascular research. Springer, Heidelberg, pp 5–25

    Chapter  Google Scholar 

  • Schulz R, Gres P, Syschally A et al (2003) Ischemic preconditioning preserves connexin43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357

    PubMed  CAS  Google Scholar 

  • Severs NJ (1994) Pathophysiology of gap junctions in heart disease. J Cardiovasc Electrophysiol 5:462–475

    Article  PubMed  CAS  Google Scholar 

  • Solan JL, Lampe PD (2007) Key connexin43 phosphorylation events regulate the gap junction life cycle. J Membr Biol 1–3:35–41

    Article  Google Scholar 

  • Tan RC, Joyner RW (1990) Electronic influences on action potentials from isolated ventricular cells. Circ Res 67:1071–1081

    PubMed  CAS  Google Scholar 

  • Turner MS, Haywood GA, Andreka P, You L, Martin PE, Evans WH, Webster KA, Bishopric NH (2004) Reversible connexion 43 dephosphorylation during hypoxia and reoxygenation is linked to cellular ATP levels. Circ Res 95:726–733

    Article  PubMed  CAS  Google Scholar 

  • Verecchia F, Duthe F, Duval S, Duchatelle I, Sarrouilhe D, Harvé JC (1999) ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation. J Physiol 516:447–459

    Article  Google Scholar 

  • Vetterlein F, Mühlfeld C, Cetegen C, Volkmann R, Schrader C, Hellige G (2006) Redistribution of connexin43 in regional acute ischemic myocardium: influence of ischemic preconditioning. Am J Physiol 291:H813–H819

    CAS  Google Scholar 

  • Wagner LM, Saleh SM, Boyle DJ, Takemoto DJ (2002) Effect of protein kinase Cgamma on gap junction disassembly in lens epithelial cells and retinal cells in culture. Mol Vis 8:59–66

    PubMed  CAS  Google Scholar 

  • Waldo AL, Camm AJ, de Ruyter H, Friedman PL, Mac Neil DJ, Pauls JF, Pitt B, Pratt CM, Schwartz PJ, Veltri EP (1996) Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. The SWORD Investigators. Survival with d-Sotalol [published erratum appears in Lancet 1996 Aug 10;348 (9024):416]. Lancet 348:7–12

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Zhang C, Ruan Y, Liu N, Wang L (2007) Changes in phosphorylation of connexin43 in rats during acute myocardial hypoxia and effects of antiarrhythmic peptide on the phosphorylation. J Huazhong Univ Science Technol Med Sci 27:241–244

    Article  Google Scholar 

  • Weng S, Lauven M, Schaefer T, Polontschouk L, Grover R, Dhein S (2002) Pharmacological modulation of Gap Junction coupling by an antiarrhythmic peptide via protein kinase C activation. FASEB J 16:1114–1116

    PubMed  CAS  Google Scholar 

  • White RL, Doeller JE, Verselis VK, Wittenberg BA (1990) Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca2+. J Gen Physiol 95:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Wu J, McHowat J, Saffitz JE, Yamada KA, Corr PB (1993) Inhibition of gap junctional conductance by long-chain acylcarnitines and their preferential accumulation in junctional sarcolemma during hypoxia. Circ Res 72:879–889

    PubMed  CAS  Google Scholar 

  • Yan GX, Kléber AG (1992) Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle. Circ Res 71:460–470

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dhein.

Additional information

Supported by a grant from the Deutsche Forschungsgemeinschaft DFG.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jozwiak, J., Dhein, S. Local effects and mechanisms of antiarrhythmic peptide AAP10 in acute regional myocardial ischemia: electrophysiological and molecular findings. Naunyn-Schmied Arch Pharmacol 378, 459–470 (2008). https://doi.org/10.1007/s00210-008-0317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0317-4

Keywords

Navigation