Skip to main content
Log in

Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine (H1) receptor activation-linked mechanism

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The present study has been designed to investigate the role of opioid receptors, mast cells, and histamine receptors (H1 subtype) in the seizurogenic effect of tramadol on pentylenetetrazole-treated mice. A single injection of pentylenetetrazole (80 mg kg−1) was used to elicit seizure activity in mice. Seizures were assessed in terms of the time latency of the onset of Straub-like tail, onset of jerky movements of whole body, convulsions, and death. Tramadol administration (50 mg kg −1) caused a marked increase in seizurogenic activity of pentylenetetrazole as measured in terms of a significant decrease in the time latency of the onset of Straub-like tail, jerky movements of whole body, convulsions, and death. Moreover, prior administration of naloxone (2 mg kg−1), fexofenadine (100 mg kg−1), cetrizine, sodium cromoglycate, and ketotifen (10 mg kg−1), respectively, attenuated the seizurogenic activity that tramadol exerted on pentylenetetrazole-treated mice. Therefore, it may be suggested that tramadol exerts a seizurogenic effect on mice via an H1 receptor activation-linked pathway possibly through an opioid receptor-dependent release of histamine from the mast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akgul A (2009) Can cardiac fibrosis be prevented? Mast cell inhibition versus anti-chymase activity. Eur J Cardiothorac Surg 35(3):553–554

    Article  PubMed  Google Scholar 

  • Barke KE, Hough LB (1993) Simultaneous measurement of opiate-induced histamine release in the periaqueductal gray and opiate antinociception: an in vivo microdialysis study. J Pharmacol Exp Ther 266:934–942

    CAS  PubMed  Google Scholar 

  • Bastian JW, Krause WE, Ridlon SA, Ercoli N (1959) CNS drug specificity as determined by the mouse intravenous pentylenetetrazole technique. J Pharmacol Exp Ther 127:75–80

    CAS  PubMed  Google Scholar 

  • Bianchi E, Norcini M, Smrcka A, Ghelardini C (2009) Supraspinal G beta gamma-dependent stimulation of PLC beta originating from G inhibitory protein–mu opioid receptor-coupling is necessary for morphine induced acute hyperalgesia. J Neurochem 111(1):171–180

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li WD, Zhu LJ, Shen YJ, Wei EQ (2002) Effects of histidine, a precursor of histamine, on pentylenetetrazole-induced seizures in rats. Acta Pharmacol Sin 23(4):361–366

    CAS  PubMed  Google Scholar 

  • Daubin C, Quentin C, Goullé JP, Guillotin D, Lehoux P, Lepage O, Charbonneau P (2007) Refractory shock and asystole related to tramadol overdose. Clin Toxicol (Phila) 45:961–964

    Google Scholar 

  • Di Capite J, Parekh AB (2009) CRAC channels and Ca2+ signaling in mast cells. Immunol Rev 231(1):45–58

    Article  PubMed  Google Scholar 

  • Driessen B, Reimann W, Giertz H (1993) Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. Br J Pharmacol 108:806–811

    CAS  PubMed  Google Scholar 

  • Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6(3):218–230

    Article  CAS  PubMed  Google Scholar 

  • Hardman JG, Limbird LE, Gilman AG (Eds) (2001) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw Hill, New York

  • Ide S, Minami M, Ishihara K, Uhl GR, Sora I, Ikeda K (2006) Mu opioid receptor-dependent and independent components in effects of tramadol. Neuropharmacology 51:651–658

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Wang J, Zhang W, Mascarenhas J, Hoffman R, Dai Y, Wisch N, Xu M (2009) Pivotal role of mast cells in pruritogenesis in patients with myeloproliferative disorders. Blood 113(23):5942–5950

    CAS  PubMed  Google Scholar 

  • Jiang Y, Borrelli L, Bacskai BJ, Kanaoka Y, Boyce JA (2009) P2Y6 receptors require an intact cysteinyl leukotriene synthetic and signaling system to induce survival and activation of mast cells. J Immunol 182(2):1129–1137

    CAS  PubMed  Google Scholar 

  • Koussa S, Rizk T, Tohmé A (2003) Tramadol-induced epileptic seizures. Rev Neurol (Paris) 159:1053–1054

    CAS  Google Scholar 

  • Kuehn HS, Beaven MA, Ma HT, Kim MS, Metcalfe DD, Gilfillan AM (2008) Synergistic activation of phospholipases C gamma and C beta: a novel mechanism for PI3K-independent enhancement of Fc epsilon RI-induced mast cell mediator release. Cell Signal 20(4):625–636

    Article  CAS  PubMed  Google Scholar 

  • Lessmann E, Leitges M, Huber M (2006) A redundant role for PKC-epsilon in mast cell signaling and effector function. Int Immunol 18(5):767–773

    Article  CAS  PubMed  Google Scholar 

  • Liu NJ, vonGizycki H, Gintzler AR (2006) Phospholipase C beta 1 modulates pain sensitivity, opioid antinociception and opioid tolerance formation. Brain Res 1069(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Loscher W, Honack D, Fassbender CP, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Res 8:171–189

    Article  CAS  PubMed  Google Scholar 

  • Miranda HF, Pinardi G (1998) Antinociception, tolerance, and physical dependence comparison between morphine and tramadol. Pharmacol Biochem Behav 61:357–360

    Article  CAS  PubMed  Google Scholar 

  • Misso NL, Aggarwal S, Thompson PJ, Vally H (2009) Increases in urinary 9alpha, 11beta-prostaglandin f2 indicate mast cell activation in wine-induced asthma. Int Arch Allergy Immunol 149(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Ono E, Taniguchi M, Mita H, Fukutomi Y, Higashi N, Miyazaki E, Kumamoto T, Akiyama K (2009) Increased production of cysteinyl leukotrienes and prostaglandin D2 during human anaphylaxis. Clin Exp Allergy 39(1):72–80

    Article  CAS  PubMed  Google Scholar 

  • Patalano F, Ruggieri F (1989) Sodium cromoglycate: a review. Eur Respir J 6:556–560

    Google Scholar 

  • Potschka H, Friderichs E, Löscher W (2000) Anticonvulsant and proconvulsant effects of tramadol, its enantiomers and its M1 metabolite in the rat kindling model of epilepsy. Br J Pharmacol 131:203–212

    Article  CAS  PubMed  Google Scholar 

  • Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and non-opioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 260:275–285

    CAS  PubMed  Google Scholar 

  • Rehni AK, Singh I, Kumar M (2008) Tramadol induced seizurogenic effect: a possible role of opioid-dependent GABA inhibitory pathway. Basic Clin Pharmacol Toxicol 103(3):262–266

    Article  CAS  PubMed  Google Scholar 

  • Saboory E, Derchansky M, Ismaili M, Jahromi SS, Brull R, Carlen PL, El Beheiry H (2007) Mechanisms of morphine enhancement of spontaneous seizure activity. Anesth Analg 105:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Patán F, Aller MA, Cuellar C, Rodero M, Corcuera MT, Nava MP, Gómez F, Blanco MD, Guerrero S, Anchuelo R, Muñiz E, Alonso MJ, Teijón JM, Arias J (2008) Mast cell inhibition by ketotifen reduces splanchnic inflammatory response in a portal hypertension model in rats. Exp Toxicol Pathol 60(4–5):347–355

    Article  PubMed  Google Scholar 

  • Shin K, Nigrovic PA, Crish J, Boilard E, McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL, Lee DM (2009) Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 182(1):647–656

    CAS  PubMed  Google Scholar 

  • Starzl TE, Niemer WT, Dell M, Forgrave PR (1953) Cortical and subcortical electrical activity in experimental sezures induced by metrazole. J Neuropathol Exp Neurol 12:262–276

    Article  CAS  PubMed  Google Scholar 

  • Tashiro M, Sakurada Y, Iwabuchi K, Mochizuki H, Kato M, Aoki M, Funaki Y, Itoh M, Iwata R, Wong DF, Yanai K (2004) Central effects of fexofenadine and cetirizine: measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11C-doxepin positron emission tomography. J Clin Pharmacol 44:890–900

    Article  CAS  PubMed  Google Scholar 

  • Togo K, Suzuki Y, Yoshimaru T, Inoue T, Terui T, Ochiai T, Ra C (2009) Aspirin and salicylates modulate IgE-mediated leukotriene secretion in mast cells through a dihydropyridine receptor-mediated Ca(2+) influx. Clin Immunol 131(1):145–156

    Article  CAS  PubMed  Google Scholar 

  • Trescot AM, Datta S, Lee M, Hansen H (2008) Opioid pharmacology. Pain Physician 11(2):S133–S153

    PubMed  Google Scholar 

  • Venkatesh P, Mukherjee PK, N SK, Nema NK, Bandyopadhyay A, Fukui H, Mizuguchi H (2009) Mast cell stabilization and antihistaminic potentials of Curculigo orchioides rhizomes. J Ethnopharmacol 126(3):434–6

    Google Scholar 

  • Vohora D, Pal SN, Pillai KK (2000) Thioperamide, a selective histamine H3 receptor antagonist, protects against PTZ-induced seizures in mice. Life Sci 66:297–301

    Article  Google Scholar 

  • Yeung CK, Law JK, Sam SW, Ingebrandt S, Lau HY, Rudd JA, Chan M (2009) Modulatory action of potassium channel openers on field potential and histamine release from rat peritoneal mast cells. Can J Physiol Pharmacol 87(8):624–632

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Onodera K, Iinuma K, Watanabe T (1994) 2-Thiazolylethylamine, a selective histamine H1 agonist, decreases seizure susceptibility in mice. Pharmacol Biochem Behav 47(3):503–507

    Article  CAS  PubMed  Google Scholar 

  • Zarrindast MR, Khalilzadeh A, Rezayat SM, Sahebgharani M, Djahanguiri B (2005) Influence of intracerebroventricular administration of histaminergic drugs on morphine state-dependent memory in the step-down passive avoidance test. Pharmacology 74:106–112

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Ge ZB, Zhu YY, Wu DC, Jin CL, Chen Z (2007) Involvement of endogenous histamine in modulatory effect of morphine on seizure susceptibility in mice. Zhejiang Da Xue Xue Bao Yi Xue Ban 36:130–133

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Madhu Chitkara, Director, Chitkara Institute of Engineering and Technology, Rajpura, Patiala, India and Dr. Ashok Chitkara, Chairman, Chitkara Educational Trust, Chandigarh, India for support and institutional facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehni, A.K., Singh, T.G., Singh, N. et al. Tramadol-induced seizurogenic effect: a possible role of opioid-dependent histamine (H1) receptor activation-linked mechanism. Naunyn-Schmied Arch Pharmacol 381, 11–19 (2010). https://doi.org/10.1007/s00210-009-0476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-009-0476-y

Keywords

Navigation