Skip to main content

Advertisement

Log in

Increased nitric oxide activity compensates for increased oxidative stress to maintain endothelial function in rat aorta in early type 1 diabetes

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Hyperglycaemia and oxidative stress are known to acutely cause endothelial dysfunction in vitro, but in the initial stages of diabetes, endothelium-dependent relaxation is preserved. The aim of this study was to investigate how endothelium-dependent relaxation is maintained in the early stages of type 1 diabetes. Diabetes was induced in Sprague–Dawley rats with a single injection of streptozotocin (48 mg/kg, i.v.), and after 6 weeks, endothelium-dependent and endothelium-independent relaxations were examined in the thoracic aorta in vitro. Lucigenin-enhanced chemiluminescence was used to measure superoxide generation from the aorta. Diabetes increased superoxide generation by the aorta (2,180 ± 363 vs 986 ± 163 AU/mg dry tissue weight). Acetylcholine (ACh)-induced relaxation was similar in aortae from control (pEC50 7.36 ± 0.09, R max 95 ± 3 %) and diabetic rats (pEC50 7.33 ± 0.10, R max 88 ± 5 %). The ACh-induced relaxation was abolished by the combined presence of the nitric oxide synthase inhibitor N-nitro-l-arginine (L-NNA, 100 μM) and an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) in control rats, but under the same conditions, the diabetic aortic rings showed significant relaxation to ACh (pEC50 6.75 ± 0.15, R max 25 ± 4 %, p < 0.05). In diabetic aortae, the addition of haemoglobin, which inactivates nitric oxide, to L-NNA + ODQ abolished the response to ACh. The addition of the potassium channel blockers, apamin and TRAM-34, to L-NNA + ODQ also abolished the relaxation response to ACh. Diabetes significantly elevated plasma total nitrite/nitrate and increased expression of endothelial nitric oxide synthase (eNOS) and calmodulin in aortae. These data indicate that after 6 weeks of diabetes, despite increased oxidant stress, endothelium-dependent relaxation is maintained due to the increased eNOS expression resulting in increased NO synthesis. In diabetic arteries, NO acts both through and independently of cGMP pathways to cause relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EDHF:

Endothelium-derived hyperpolarising factor

eNOS:

Endothelial nitric oxide synthase

sGC:

Soluble guanylate cyclase

ODQ:

1H-[1,2,4]Oxadiazolo[4,2-a]quinoxalin-1-one

L-NNA:

N-Nitro-l-arginine

TRAM-34:

1-[(2-Chlorophenyl)(diphenyl)methyl]-1H-pyrazole

IKCa :

Intermediate-conductance calcium-activated potassium channel

SKCa :

Small-conductance calcium-activated potassium channel

ROS:

Reactive oxygen species

PHMBA:

p-Hydroxymercuribenzoic acid

References

  • Abboud K, Bassila JC, Ghali-Ghoul R, Sabra R (2009) Temporal changes in vascular reactivity in early diabetes mellitus in rats: role of changes in endothelial factors and in phosphodiesterase activity. Am J Physiol Heart Circ Physiol 297:H836–H845

    Article  PubMed  CAS  Google Scholar 

  • Adak S, Wang Q, Stuehr DJ (2000) Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism. J Biol Chem 275:33554–33561

    Article  PubMed  CAS  Google Scholar 

  • Alencar JL, Chalupsky K, Sarr M, Schini-Kerth V, Vanin AF, Stoclet J-C, Muller B (2003) Inhibition of arterial contraction by dinitrosyl-iron complexes: critical role of the thiol ligand in determining rate of nitric oxide (NO) release and formation of releasable NO stores by S-nitrosation. Biochem Pharmacol 66:2365–2374

    Article  PubMed  CAS  Google Scholar 

  • Alper G, Olukman M, Irer S, Çalayan O, Duman E, Ylmaz C, Ülker S (2006) Effect of vitamin E and C supplementation combined with oral antidiabetic therapy on the endothelial dysfunction in the neonatally streptozotocin injected diabetic rat. Diabetes Metab Res Rev 22:190–197

    Article  PubMed  CAS  Google Scholar 

  • Altan VM, Karasu C, Özüari A (1989) The effects of type-1 and type-2 diabetes on endothelium-dependent relaxation in rat aorta. Pharmacol Biochem Behav 33:519–522

    Article  PubMed  CAS  Google Scholar 

  • Ammar RF Jr, Gutterman DD, Brooks LA, Dellsperger KC (2000) Free radicals mediate endothelial dysfunction of coronary arterioles in diabetes. Cardiovasc Res 47:595–601

    Article  PubMed  CAS  Google Scholar 

  • Bartnik M, Norhammar A, Ryden L (2007) Hyperglycaemia and cardiovascular disease. J Intern Med 262:145–156

    Article  PubMed  CAS  Google Scholar 

  • Batenburg WW, Kappers MH, Eikmann MJ, Ramzan SN, de Vries R, Danser AH (2009) Light-induced vs. bradykinin-induced relaxation of coronary arteries: do S-nitrosothiols act as endothelium-derived hyperpolarizing factors? J Hypertens 27:1631–1640

    Article  PubMed  CAS  Google Scholar 

  • Bates JN, Harrison DG, Myers PR, Minor RL (1991) EDRF: nitrosylated compound or authentic nitric oxide. Basic Res Cardiol 86(Suppl 2):17–26

    PubMed  Google Scholar 

  • Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21:330–334

    PubMed  CAS  Google Scholar 

  • Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F (2005) Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol 511:53–64

    Article  PubMed  CAS  Google Scholar 

  • Bojunga J, Dresar-Mayert B, Usadel K-H, Kusterer K, Zeuzem S (2004) Antioxidative treatment reverses imbalances of nitric oxide synthase isoform expression and attenuates tissue-cGMP activation in diabetic rats. Biochem Biophys Res Commun 316:771–780

    Article  PubMed  CAS  Google Scholar 

  • Brahler S, Kaistha A, Schmidt VJ, Wolfle SE, Busch C, Kaistha BP, Kacik M, Hasenau AL, Grgic I, Si H, Bond CT, Adelman JP, Wulff H, de Wit C, Hoyer J, Kohler R (2009) Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circ 119:2323–2332

    Article  Google Scholar 

  • Brondum E, Kold-Petersen H, Simonsen U, Aalkjaer C (2010) NS309 restores EDHF-type relaxation in mesenteric small arteries from type 2 diabetic ZDF rats. Br J Pharmacol 159:154–165

    Article  PubMed  CAS  Google Scholar 

  • Bryan RM, You J, Golding EM, Marrelli SP (2005) Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin. Anesthesiology 102:1261–1277

    Article  PubMed  CAS  Google Scholar 

  • Bullen ML, Miller AA, Dharmarajah J, Drummond GR, Sobey CG, Kemp-Harper BK (2011) Vasorelaxant and antiaggregatory actions of the nitroxyl donor isopropylamine NONOate are maintained in hypercholesterolemia. Am J Physiol Heart Circ Physiol 301:H1405–H1414

    Article  PubMed  CAS  Google Scholar 

  • Cameron JD, Cruickshank JK (2007) Glucose, insulin, diabetes and mechanisms of arterial dysfunction. Clin Exp Pharmacol Physiol 34:677–682

    Article  PubMed  CAS  Google Scholar 

  • Chan ECH, Drummond GR, Woodman OL (2003) 3′,4′-Dihydroxyflavonol enhances nitric oxide bioavailability and improves vascular function after ischemia and reperfusion injury in the rat. J Cardiovasc Pharmacol 42:727–735

    Article  PubMed  CAS  Google Scholar 

  • Clark SG, Fuchs LC (1997) Role of nitric oxide and Ca++-dependent K+ channels in mediating heterogeneous microvascular responses to acetylcholine in different vascular beds. J Pharmacol Exp Ther 282:1473–1479

    PubMed  CAS  Google Scholar 

  • Csanyi G, Lepran I, Flesch T, Telegdy G, Szabo G, Mezei Z (2007) Lack of endothelium-derived hyperpolarizing factor (EDHF) up-regulation in endothelial dysfunction in aorta in diabetic rats. Pharmacol Rep 59:447–455

    PubMed  CAS  Google Scholar 

  • Dalsgaard T, Kroigaard C, Misfeldt M, Bek T, Simonsen U (2010) Openers of small conductance calcium-activated potassium channels selectively enhance NO-mediated bradykinin vasodilatation in porcine retinal arterioles. Br J Pharmacol 160:1496–1508

    Article  PubMed  CAS  Google Scholar 

  • Ding H, Hashem M, Triggle C (2007) Increased oxidative stress in the streptozotocin-induced diabetic apoE-deficient mouse: changes in expression of NADPH oxidase subunits and eNOS. Eur J Pharmacol 561:121–128

    Article  PubMed  CAS  Google Scholar 

  • Ellis A, Triggle CR (2003) Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol 81:1013–1028

    Article  PubMed  CAS  Google Scholar 

  • Fang XD, Yang F, Zhu L, Shen YL, Wang LL, Chen YY (2009) Curcumin ameliorates high glucose-induced acute vascular endothelial dysfunction in rat thoracic aorta. Clin Exp Pharmacol Physiol 36:1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Frank PG, Hassan GS, Rodriguez-Feo JA, Lisanti MP (2007) Caveolae and caveolin-1: novel potential targets for the treatment of cardiovascular disease. Curr Pharm Des 13:1761–1769

    Article  PubMed  CAS  Google Scholar 

  • Garcia VMC, Ochoa JE, Elias MM (1999) Effect of early stage of experimental diabetes on vascular functions in isolated perfused kidneys. J Auton Pharmacol 19:97–103

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pascual A, Labadia A, Jimenez E, Costa G (1995) Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance. Br J Pharmacol 115:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Goel A, Zhang Y, Anderson L, Rahimian R (2007) Gender difference in rat aorta vasodilation after acute exposure to high glucose: Involvement of protein kinase C beta and superoxide but not of Rho kinase. Cardiovasc Res 76:351–360

    Article  PubMed  CAS  Google Scholar 

  • Gomes MB, Affonso FS, Cailleaux S, Almeida AL, Pinto LF, Tibirica E (2004) Glucose levels observed in daily clinical practice induce endothelial dysfunction in the rabbit macro- and microcirculation. Fundam Clin Pharmacol 18:339–346

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Xia Z, Jiang J, McNeill JH (2007) Downregulation of NADPH oxidase, antioxidant enzymes, and inflammatory markers in the heart of streptozotocin-induced diabetic rats by N-acetyl-L-cysteine. Am J Physiol Heart Circ Physiol 292:H1728–H1736

    Article  PubMed  CAS  Google Scholar 

  • Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RAK, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:e14–e22

    Article  PubMed  CAS  Google Scholar 

  • Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40:183–192

    Article  PubMed  CAS  Google Scholar 

  • Jesmin S, Zaedi S, Maeda S, Yamaguchi I, Goto K, Miyauchi T (2006) Effects of a selective endothelin A receptor antagonist on the expressions of iNOS and eNOS in the heart of early streptozotocin-induced diabetic rats. Exp Biol Med 231:925–931

    CAS  Google Scholar 

  • Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA (1993) Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circ 88:2510–2516

    Article  CAS  Google Scholar 

  • Karasu Ç (2000) Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species. Eur J Pharmacol 392:163–173

    Article  PubMed  CAS  Google Scholar 

  • Kim-Shapiro DB, Schechter AN, Gladwin MT (2006) Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol 26:697–705

    Article  PubMed  CAS  Google Scholar 

  • Komers R, Schutzer WE, Reed JF, Lindsley JN, Oyama TT, Buck DC, Mader SL, Anderson S (2006) Altered endothelial nitric oxide synthase targeting and conformation and caveolin-1 expression in the diabetic kidney. Diabetes 55:1651–1659

    Article  PubMed  CAS  Google Scholar 

  • Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Circ Res 106:633–646

    Article  PubMed  CAS  Google Scholar 

  • Lopes-Virella MF, Carter RE, Gilbert GE, Klein RL, Jaffa M, Jenkins AJ, Lyons TJ, Garvey WT, Virella G (2008) Risk factors related to inflammation and endothelial dysfunction in the DCCT/EDIC cohort and their relationship with nephropathy and macrovascular complications. Diabetes Care 31:2006–2012

    Article  PubMed  CAS  Google Scholar 

  • Malakul W, Thirawarapan S, Suvitayavat W, Woodman OL (2008) Type 1 diabetes and hypercholesterolaemia reveal the contribution of endothelium-derived hyperpolarizing factor to endothelium-dependent relaxation of the rat aorta. Clin Exp Pharmacol Physiol 35:192–200

    PubMed  CAS  Google Scholar 

  • Myers PR, Minor RL Jr, Guerra R Jr, Bates JN, Harrison DG (1990) Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 345:161–163

    Article  PubMed  CAS  Google Scholar 

  • Nacci C, Tarquinio M, De Benedictis L, Mauro A, Zigrino A, Carratu MR, Quon MJ, Montagnani M (2009) Endothelial dysfunction in mice with streptozotocin-induced type 1 diabetes is opposed by compensatory overexpression of cyclooxygenase-2 in the vasculature. Endocrinology 150:849–861

    Article  PubMed  CAS  Google Scholar 

  • Ng ESM, Cheng Z-J, Ellis A, Ding H, Jiang Y, Li Y, Hollenberg MD, Triggle CR (2007) Nitrosothiol stores in vascular tissue: modulation by ultraviolet light, acetylcholine and ionomycin. Eur J Pharmacol 560:183–192

    Article  PubMed  CAS  Google Scholar 

  • Orie NN, Aloamaka CP, Iyawe VI (1993) Duration-dependent attenuation of acetylcholine—but not histamine—induced relaxation of the aorta in diabetes mellitus. Gen Pharmacol 24:329–332

    Article  PubMed  CAS  Google Scholar 

  • Oyama Y, Kawasaki H, Hattori Y, Kanno M (1986) Attenuation of endothelium-dependent relaxation in aorta from diabetic rats. Eur J Pharmacol 132:75–78

    Article  PubMed  CAS  Google Scholar 

  • Peredo HA, Rodríguez R, Susemihl MC, Villarreal I, Filinger E (2006) Long-term streptozotocin-induced diabetes alters prostanoid production in rat aorta and mesenteric bed. Auton Autocoid Pharmacol 26:355–360

    Article  CAS  Google Scholar 

  • Pieper GM (1999) Enhanced, unaltered and impaired nitric oxide-mediated endothelium-dependent relaxation in experimental diabetes mellitus: importance of disease duration. Diabetology 42:204–213

    Article  CAS  Google Scholar 

  • Pieper GM, Dembny K, Siebeneich W (1998) Long-term treatment in vivo with NOX-101, a scavenger of nitric oxide, prevents diabetes-induced endothelial dysfunction. Diabetol 41:1220–1226

    Article  CAS  Google Scholar 

  • Riad A, Westermann D, Van Linthout S, Mohr Z, Uyulmaz S, Becher PM, Rutten H, Wohlfart P, Peters H, Schultheiss HP, Tschope C (2008) Enhancement of endothelial nitric oxide synthase production reverses vascular dysfunction and inflammation in the hindlimbs of a rat model of diabetes. Diabetol 51:2325–2332

    Article  CAS  Google Scholar 

  • Rusche KM, Spiering MM, Marletta MA (1998) Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase. Biochemistry 37:15503–15512

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N, Sasaki T, Tsujioka K, Makino H, Kashihara N (2005) NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol 288:F1144–F1152

    Article  PubMed  CAS  Google Scholar 

  • Shen B, Ye C-L, Ye K-H, Liu J-J, Sun P, Jiang J-H (2003) Mechanism underlying enhanced endothelium-dependent vasodilatation in thoracic aorta of early stage streptozotocin-induced diabetic mice. Acta Pharmacol Sin 24:422–428

    PubMed  CAS  Google Scholar 

  • Sheng J-Z, Braun AP (2007) Small- and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells. Am J Physiol Cell Physiol 293:C458–C467

    Article  PubMed  CAS  Google Scholar 

  • Sheng JZ, Ella S, Davis MJ, Hill MA, Braun AP (2009) Openers of SKCa and IKCa channels enhance agonist-evoked endothelial nitric oxide synthesis and arteriolar vasodilation. FASEB J 23:1138–1145

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Ku DD, Man RYK, Vanhoutte PM (2006) Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. J Pharmacol Exp Ther 318:276–281

    Article  PubMed  CAS  Google Scholar 

  • Sobey CG, Weiler JM, Boujaoude M, Woodman OL (2004) Effect of short-term phytoestrogen treatment in male rats on nitric oxide-mediated responses of carotid and cerebral arteries: comparison with 17beta-estradiol. J Pharmacol Exp Ther 310:135–140

    Article  PubMed  CAS  Google Scholar 

  • Stadler K, Jenei V, von Bolcshazy G, Somogyi A, Jakus J (2003) Increased nitric oxide levels as an early sign of premature aging in diabetes. Free Radic Biol Med 35:1240–1251

    Article  PubMed  CAS  Google Scholar 

  • Stankevicius E, Lopez-Valverde V, Rivera L, Hughes AD, Mulvany MJ, Simonsen U (2006) Combination of Ca2+-activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 149:560–572

    Article  PubMed  CAS  Google Scholar 

  • Stankevicius E, Dalsgaard T, Kroigaard C, Beck L, Boedtkjer E, Misfeldt MW, Nielsen G, Schjorring O, Hughes A, Simonsen U (2011) Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. J Pharmacol Exp Ther 339:842–850

    Article  PubMed  CAS  Google Scholar 

  • Stockklauser-Färber K, Ballhausen T, Laufer A, Rösen P (2000) Influence of diabetes on cardiac nitric oxide synthase expression and activity. Biochim Biophys Acta (BBA) - Mol Basis Dis 1535:10–20

    Article  Google Scholar 

  • Sullivan JC, Pollock JS (2006) Coupled and Uncoupled NOS: Separate But Equal? Circ Res 98:717–719

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Mendelsohn ME (2003) Calmodulin-dependent and -independent activation of endothelial nitric-oxide synthase by heat shock protein 90. J Biol Chem 278:9339–9344

    Article  PubMed  CAS  Google Scholar 

  • Vera R, Sanchez M, Galisteo M, Villar IC, Jimenez R, Zarzuelo A, Perez-Vizcaino F, Duarte J (2007) Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity. Clin Sci (Lond) 112:183–191

    Article  CAS  Google Scholar 

  • Wendt MC, Daiber A, Kleschyov AL, Mulsch A, Sydow K, Schulz E, Chen K, Keaney JJF, Lassegue B, Walter U, Griendling KK, Munzel T (2005) Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4. Free Radic Biol Med 39:381–391

    Article  PubMed  CAS  Google Scholar 

  • Woodman OL, Missen MA, Boujaoude M (2004) Daidzein and 17 beta-estradiol enhance nitric oxide synthase activity associated with an increase in calmodulin and a decrease in caveolin-1. J Cardiovasc Pharmacol 44:155–163

    Article  PubMed  CAS  Google Scholar 

  • Yuill KH, Yarova P, Kemp-Harper BK, Garland CJ, Dora KA (2011) A novel role for HNO in local and spreading vasodilatation in rat mesenteric resistance arteries. Antioxid Redox Signal 14:1625–1635

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the help from Mr C.H. Leo during the course of the study. Anjali Joshi was supported by a Melbourne University International Research Scholarship.

Conflict of interest

The authors declare that they do not have any competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Woodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, A., Woodman, O.L. Increased nitric oxide activity compensates for increased oxidative stress to maintain endothelial function in rat aorta in early type 1 diabetes. Naunyn-Schmiedeberg's Arch Pharmacol 385, 1083–1094 (2012). https://doi.org/10.1007/s00210-012-0794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-012-0794-3

Keywords

Navigation