Skip to main content
Log in

Augmentation therapy with alpha-lipoic acid and desvenlafaxine: A future target for treatment of depression?

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This study was designed to investigate the possible antidepressant effects of the antioxidant alpha-lipoic acid (ALA) as a stand-alone treatment or in association with desvenlafaxine (DVS) in the chronic corticosterone (CORT)-induced depression model. The depression model was induced by repeated administrations of CORT (20 mg/kg, subcutaneous) in mice over a period of 14 days. Between days 15 and 21, a randomized group of mice received DVS (10 or 20 mg/kg, per os [PO]), ALA (100 or 200 mg/kg, PO), or a combination of DVS (10 or 20 mg/kg, PO) and ALA (100 or 200 mg/kg, PO) along with the CORT injections for the remaining 7 days. Other groups of mice received DVS (10 or 20 mg/kg, PO) or ALA (100 or 200 mg/kg, PO) alone. Open field test, elevated plus maze (EPM) test, tail suspension test (TST), and forced swimming test (FST) were carried out 1 h after the last injection of CORT. Repeated CORT injections induced anxiety-like and depressive-like behaviors as observed by decreased open arms entries in the EPM test and increased immobility time in the TST and FST. The administration of DVS and ALA alone was able to reverse the increases in the immobility time. The combination of ALA and DVS potentiated the observed effects of DVS. These results suggest that augmentation therapy with the addition of antioxidant drugs may be an important pharmacological approach for the treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T (2008) Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacol 55:1355–1363

    Article  CAS  Google Scholar 

  • Ago Y, Yano K, Araki R, Hiramatsu N, Kita Y, Kawasaki T, Onoe H, Chaki S, Nakazato A, Hashimoto H, Baba A, Takuma K, Matsuda T (2013) Metabotropic glutamate 2/3 receptor antagonists improve behavioral and prefrontal dopaminergic alterations in the chronic corticosterone-induced depression model in mice. Neuropharmacol 65:29–38

    Article  CAS  Google Scholar 

  • Aina Y, Susman JL (2006) Understanding comorbidity with depression and anxiety disorders. J Am Osteopath Assoc 106:S9–S14

    PubMed  Google Scholar 

  • Alfinito PD, Huselton C, Chen X, Deecher DC (2006) Pharmacokinetic and pharmacodynamic profiles of the novel serotonin and norepinephrine reuptake inhibitor desvenlafaxine succinate in ovariectomized Sprague-Dawley rats. Brain Res 7:71–78

    Article  Google Scholar 

  • Altemus M (2006) Sex differences in depression and anxiety disorders: potential biological determinants. Horm Behav 50:534–538

    Article  PubMed  Google Scholar 

  • Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21:205–235

    Article  PubMed  CAS  Google Scholar 

  • Behr GA, Moreira JCF, Frey BN (2012) Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxid Med Cell Longev 2012:13

    Article  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  PubMed  CAS  Google Scholar 

  • Berrocoso E, Ikeda K, Sora I, Uhl GR, Sanchez-Blazquez P, Mico JA (2013) Active behaviours produced by antidepressants and opioids in the mouse tail suspension test. Int J Neuropsychopharmacol 16:151–162

    Article  PubMed  CAS  Google Scholar 

  • Bilska A, Wlodek L (2005) Lipoic acid—the drug of the future? Pharmacol Rep 57:570–577

    PubMed  CAS  Google Scholar 

  • Carballedo A, Morris D, Zill P, Fahey C, Reinhold E, Meisenzahl E, Bondy B, Gill M, Moller HJ, Frodl T (2013) Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. Am J Med Genet B Neuropsychiatr Genet 22:32130

    Google Scholar 

  • Carrier N, Kabbaj M (2013) Sex differences in the antidepressant-like effects of ketamine. Neuropharmacol 19:3–8

    Google Scholar 

  • Chung CP, Schmidt D, Stein CM, Morrow JD, Salomon RM (2012) Increased oxidative stress in patients with depression and its relationship to treatment. Psychiatry Res 11:665–668

    Google Scholar 

  • Clayton AH, Kornstein SG, Rosas G, Guico-Pabia C, Tourian KA (2009) An integrated analysis of the safety and tolerability of desvenlafaxine compared with placebo in the treatment of major depressive disorder. CNS Spectr 14:183–195

    PubMed  Google Scholar 

  • Dalby RB, Elfving B, Poulsen PH, Foldager L, Frandsen J, Videbech P, Rosenberg R (2013) Plasma brain-derived neurotrophic factor and prefrontal white matter integrity in late-onset depression and normal aging. Acta Psychiatr Scand 27:12085

    Google Scholar 

  • David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology 166:373–382

    PubMed  CAS  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  PubMed  CAS  Google Scholar 

  • De Araujo DP, Lobato Rde F, Cavalcanti JR, Sampaio LR, Araujo PV, Silva MC, Neves KR, Fonteles MM, Sousa FC, Vasconcelos SM (2011) The contributions of antioxidant activity of lipoic acid in reducing neurogenerative progression of Parkinson’s disease: a review. Int J Neurosci 121:51–57

    Article  PubMed  Google Scholar 

  • DeMaio W, Kane C, Nichols A, Jordan R (2011) Metabolism studies of desvenlafaxine. J Bioequiv Availab 3:151–160

    Article  CAS  Google Scholar 

  • Ferreira PM, Militao GC, Freitas RM (2009) Lipoic acid effects on lipid peroxidation level, superoxide dismutase activity, and monoamines concentration in rat hippocampus. Neurosci Lett 464:131–134

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, Ramirez MJ, Del Rio J, Tordera RM (2009) Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry 66:275–282

    Article  PubMed  CAS  Google Scholar 

  • Geerlings MI, Sigurdsson S, Eiriksdottir G, Garcia ME, Harris TB, Sigurdsson T, Gudnason V, Launer LJ (2013) Associations of current and remitted major depressive disorder with brain atrophy: the AGES-Reykjavik Study. Psychol Med 43:317–328

    Article  PubMed  CAS  Google Scholar 

  • Gourley SL, Taylor JR (2009) Recapitulation and reversal of a persistent depression-like syndrome in rodents. Curr Protoc Neurosci Chapter 9:Unit 9.32. doi:10.1002/0471142301.ns0932s49

  • Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, Corey-Lisle PK (2003) The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry 64:1465–1475

    Article  PubMed  Google Scholar 

  • Gregus A, Wintink AJ, Davis AC, Kalynchuk LE (2005) Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 156:105–114

    Article  PubMed  CAS  Google Scholar 

  • Hagen TM, Ingersoll RT, Lykkesfeldt J, Liu J, Wehr CM, Vinarsky V, Bartholomew JC, Ames AB (1999) (R)-alpha-lipoic acid-supplemented old rats have improved mitochondrial function, decreased oxidative damage, and increased metabolic rate. FASEB J 13:411–418

    PubMed  CAS  Google Scholar 

  • Hill MN, Brotto LA, Lee TT, Gorzalka BB (2003) Corticosterone attenuates the antidepressant-like effects elicited by melatonin in the forced swim test in both male and female rats. Prog Neuropsychopharmacol Biol Psychiatry 27:905–911

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Zhong XM, Li ZY, Feng CR, Pan AJ, Mao QQ (2011) Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett 493:145–148

    Article  PubMed  CAS  Google Scholar 

  • Iijima M, Ito A, Kurosu S, Chaki S (2010) Pharmacological characterization of repeated corticosterone injection-induced depression model in rats. Brain Res 4:75–80

    Article  Google Scholar 

  • Johnson SA, Fournier NM, Kalynchuk LE (2006) Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res 168:280–288

    Article  PubMed  CAS  Google Scholar 

  • Kalynchuk LE, Gregus A, Boudreau D, Perrot-Sinal TS (2004) Corticosterone increases depression-like behavior, with some effects on predator odor-induced defensive behavior, in male and female rats. Behav Neurosci 118:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Kleinkauf-Rocha J, Bobermin LD, Machado PD, Goncalves CA, Gottfried C, Quincozes-Santos A (2012) Lipoic acid increases glutamate uptake, glutamine synthetase activity, and glutathione content in C6 astrocyte cell line. Int J Dev Neurosci 31:165–170

    Article  PubMed  Google Scholar 

  • Kornstein SG, Schneider RK (2001) Clinical features of treatment-resistant depression. J Clin Psychiatry 16:18–25

    Google Scholar 

  • Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902

    Article  PubMed  CAS  Google Scholar 

  • Kubera M, Curzytek K, Duda W, Leskiewicz M, Basta-Kaim A, Budziszewska B, Roman A, Zajicova A, Holan V, Lason W, Maes M (2013) A new animal model of (chronic) depression induced by repeated and intermittent lipopolysaccharide administration for 4 months. Brain Behav Immun 9:4

    Google Scholar 

  • Lieberman DZ, Massey SH (2010) Desvenlafaxine in major depressive disorder: an evidence-based review of its place in therapy. Core Evid 4:67–82

    PubMed  Google Scholar 

  • Lieberman DZ, Montgomery SA, Tourian KA, Brisard C, Rosas G, Padmanabhan K, Germain JM, Pitrosky B (2008) A pooled analysis of two placebo-controlled trials of desvenlafaxine in major depressive disorder. Int Clin Psychopharmacol 23:188–197

    Article  PubMed  Google Scholar 

  • Liebowitz MR, Tourian KA (2010) Efficacy, safety, and tolerability of desvenlafaxine 50 mg/d for the treatment of major depressive disorder: a systematic review of clinical trials. Prim Care Companion J Clin Psychiatry 12(3):e1–e10

    Google Scholar 

  • Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180–185

    PubMed  CAS  Google Scholar 

  • Liu W, Zhou C (2012) Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning. Psychoneuroendocrinology 37:1057–1070

    Article  PubMed  CAS  Google Scholar 

  • Macedo DS, Medeiros CD, Cordeiro RC, Sousa FC, Santos JV, Morais TA, Hyphantis TN, McIntyre RS, Quevedo J, Carvalho AF (2012) Effects of alpha-lipoic acid in an animal model of mania induced by d-amphetamine. Bipolar Disord 14:707–718

    Article  PubMed  CAS  Google Scholar 

  • Maeng S, Zarate CA, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692

    Article  PubMed  CAS  Google Scholar 

  • Mansur RB, Cha DS, Asevedo E, McIntyre RS, Brietzke E (2012) Selfish brain and neuroprogression in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 20:66–71

    Google Scholar 

  • Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    Article  PubMed  Google Scholar 

  • Mathew SJ, Shah A, Lapidus K, Clark C, Jarun N, Ostermeyer B, Murrough JW (2012) Ketamine for treatment-resistant unipolar depression: current evidence. CNS Drugs 26:189–204

    Article  PubMed  CAS  Google Scholar 

  • McGrath PJ, Stewart JW, Fava M, Trivedi MH, Wisniewski SR, Nierenberg AA, Thase ME, Davis L, Biggs MM, Shores-Wilson K, Luther JF, Niederehe G, Warden D, Rush AJ (2006) Tranylcypromine versus venlafaxine plus mirtazapine following three failed antidepressant medication trials for depression: a STAR*D report. Am J Psychiatry 163:1531–1541

    Article  PubMed  Google Scholar 

  • Murray F, Smith DW, Hutson PH (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 583:115–127

    Article  PubMed  CAS  Google Scholar 

  • Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M (2010) Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One 5:8566

    Article  Google Scholar 

  • Nelson JC, Pikalov A, Berman RM (2008) Augmentation treatment in major depressive disorder: focus on aripiprazole. Neuropsychiatr Dis Treat 4:937–948

    PubMed  CAS  Google Scholar 

  • Painsipp E, Kofer MJ, Sinner F, Holzer P (2011) Prolonged depression-like behavior caused by immune challenge: influence of mouse strain and social environment. PLoS One 6:6

    Article  Google Scholar 

  • Papakostas GI, Hallett LA, Smith J, Tossani E, Mascarini A, Burns AM, Birnbaum RJ, Fava M, Alpert JE (2007) A survey of five antidepressant properties influencing clinician’s treatment choices in MDD. Neuropsychiatr Dis Treat 3:169–172

    Article  PubMed  Google Scholar 

  • Popoli M, Yan Z, McEwen BS, Sanacora G (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37

    PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Rai D, Zitko P, Jones K, Lynch J, Araya R (2013) Country- and individual-level socioeconomic determinants of depression: multilevel cross-national comparison. Br J Psychiatry 24:24

    Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  PubMed  CAS  Google Scholar 

  • Salazar MR (2000) Alpha lipoic acid: a novel treatment for depression. Med Hypotheses 55:510–512

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (2001) Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci U S A 98:12320–12322

    Article  PubMed  CAS  Google Scholar 

  • Silva MC, Sampaio LR, Araujo DP, Araujo PV, Monte AS, Rodrigues FT, Woods DJ, Sousa FCF, Fonteles MM, Vasconcelos SM (in press) Central effects of lipoic acid associated with paroxetine in mice. Am J Ther

  • Soczynska JK, Kennedy SH, Chow CS, Woldeyohannes HO, Konarski JZ, McIntyre RS (2008) Acetyl-l-carnitine and alpha-lipoic acid: possible neurotherapeutic agents for mood disorders? Expert Opin Investig Drugs 17:827–843

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  PubMed  CAS  Google Scholar 

  • Szuster-Ciesielska A, Slotwinska M, Stachura A, Marmurowska-Michalowska H, Dubas-Slemp H, Bojarska-Junak A, Kandefer-Szerszen M (2008) Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 32:686–694

    Article  PubMed  CAS  Google Scholar 

  • Watson S, Mackin P (2006) HPA axis function in mood disorders. Psychiatry 5:166–170

    Article  Google Scholar 

  • Ye L, Hu Z, Du G, Zhang J, Dong Q, Fu F, Tian J (2012) Antidepressant-like effects of the extract from Cimicifuga foetida L. J Ethnopharmacol 144:683–691

    Article  PubMed  CAS  Google Scholar 

  • Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Gu F, Chen J, Dong W (2010) Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat. Brain Res 17:141–148

    Article  Google Scholar 

  • Zhao Y, Ma R, Shen J, Su H, Xing D, Du L (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from FUNCAP—Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico, CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and CNPq—National Council for Scientific and Technological Development. The authors would also like to especially thank the team of American Manuscript Editors for the language editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvânia Maria Mendes Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, M.C.C., de Sousa, C.N.S., Sampaio, L.R.L. et al. Augmentation therapy with alpha-lipoic acid and desvenlafaxine: A future target for treatment of depression?. Naunyn-Schmiedeberg's Arch Pharmacol 386, 685–695 (2013). https://doi.org/10.1007/s00210-013-0867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0867-y

Keywords

Navigation