Skip to main content
Log in

Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The transient receptor potential ankyrin 1 (TRPA1) has been identified as a relevant target for the development of novel analgesics. Gallic acid (GA) is a polyphenolic compound commonly found in green tea and various berries and possesses a wide range of biological activities. The goal of this study was to identify GA as a TRPA1 antagonist and observe its antinociceptive effects in different pain models. First, we evaluated the ability of GA to affect cinnamaldehyde-induced calcium influx. Then, we observed the antinociceptive and antiedematogenic effects of GA (3–100 mg/kg) oral administration after the intraplantar (i.pl.) injection of TRPA1 agonists (allyl isothiocyanate, cinnamaldehyde, or hydrogen peroxide—H2O2) in either an inflammatory pain model (carrageenan i.pl. injection) or a neuropathic pain model (chronic constriction injury) in male Swiss mice (25–35 g). GA reduced the calcium influx mediated by TRPA1 activation. Moreover, the oral administration of GA decreased the spontaneous nociception triggered by allyl isothiocyanate, cinnamaldehyde, and H2O2. Carrageenan-induced allodynia and edema were largely reduced by the pretreatment with GA. Moreover, the administration of GA was also capable of decreasing cold and mechanical allodynia in a neuropathic pain model. Finally, GA was absorbed after oral administration and did not produce any detectable side effects. In conclusion, we found that GA is a TRPA1 antagonist with antinociceptive properties in relevant models of clinical pain without detectable side effects, which makes it a good candidate for the treatment of painful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AITC:

Allyl isothiocyanate

CCI:

Chronic constriction injury

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

GA:

Gallic acid

H2O2 :

Hydrogen peroxide

4-HNE:

4-Hydroxynonenal

i.p.:

Intraperitoneal

PWT:

Paw withdrawal threshold

PBS:

Phosphate-buffered saline

p.o.:

Oral route

s.c.:

Subcutaneously

TRPA1:

Transient receptor potential ankyrin 1

References

  • Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, Bucher B, Galzi JL, Sterner O, Bevan S, Högestätt ED, Zygmunt PM (2011) TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Δ(9)-tetrahydrocannabiorcol. Nat Commun 2:551

    Article  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrade EL, Luiz AP, Ferreira J, Calixto JB (2008) Pronociceptive response elicited by TRPA1 receptor activation in mice. Neuroscience 152:511–520

    Article  CAS  PubMed  Google Scholar 

  • Andrade EL, Meotti FC, Calixto JB (2012) TRPA1 antagonists as potential analgesic drugs. Pharmacol Ther 133:189–204

    Article  CAS  PubMed  Google Scholar 

  • Andre E, Campi B, Materazzi S, Trevisani M, Amadesi S, Massi D, Creminon C, Vaksman N, Nassini R, Civelli M, Baraldi PG, Poole DP, Bunnett NW, Geppetti P, Patacchini R (2008) Cigarette smoke-induced neurogenic inflammation is mediated by alpha, beta-unsaturated aldehydes and the TRPA1 receptor in rodents. J Clin Invest 118:2574–2582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baraldi PG, Preti D, Materazzi S, Geppetti P (2010) Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. J Med Chem 53:5085–5107

    Article  CAS  PubMed  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–12252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boeira VT, Leite CE, Santos AA Jr, Edelweiss MI, Calixto JB, Campos MM, Morrone FB (2011) Effects of the hydroalcoholic extract of Phyllanthus niruri and its isolated compounds on cyclophosphamide-induced hemorrhagic cystitis in mouse. Naunyn Schmiedeberg’s Arch Pharmacol 384:265–275

    Article  CAS  Google Scholar 

  • Boligon AA, Pereira RP, Feltrin AC, Machado MM, Janovik V, Rocha JB, Athayde ML (2009) Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss. Bioresour Technol 100:6592–6598

    Article  CAS  PubMed  Google Scholar 

  • Buxton I (2006) Pharmacokinetics and pharmacodynamics: the dynamics of drug absorption, distribution, action and elimination. In: Brunton LL, Lazo JS, Packer DL (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 11th edn. The McGraw-Hill, New York, pp 1–40

    Google Scholar 

  • Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang XF, Niforatos W, Bianchi BR, Baker SJ, Zhong C, Simler GH, McDonald HA, Schmidt RG, McGaraughty SP, Chu KL, Faltynek CR, Kort ME, Reilly RM, Kym PR (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152:1165–1172

    Article  CAS  PubMed  Google Scholar 

  • Cordero-Morales JF, Gracheva EO, Julius D (2011) Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc Natl Acad Sci U S A 108:E1184–E1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordova MM, Werner MF, Silva MD, Ruani AP, Pizzolatti MG, Santos AR (2011) Further antinociceptive effects of myricitrin in chemical models of overt nociception in mice. Neurosci Lett 495:173–177

    Article  CAS  PubMed  Google Scholar 

  • da Costa DS, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB (2009) The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 148:431–437

    Article  PubMed  Google Scholar 

  • Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462

    Article  CAS  PubMed  Google Scholar 

  • Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, Henze DA, Kane SA, Urban MO (2008) HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain 4:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Geppetti P, Nassini R, Materazzi S, Benemei S (2008) The concept of neurogenic inflammation. BJU Int 101(Suppl 3):2–6

    Article  CAS  PubMed  Google Scholar 

  • Gregus AM, Doolen S, Dumlao DS, Buczynski MW, Takasusuki T, Fitzsimmons BL, Hua XY, Taylor BK, Dennis EA, Yaksh TL (2012) Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc Natl Acad Sci U S A 109:6721–6726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue M, Suzuki R, Sakaguchi N, Li Z, Takeda T, Ogihara Y, Jiang BY, Chen Y (1995) Selective induction of cell death in cancer cells by gallic acid. Biol Pharm Bull 18:1526–1530

    Article  CAS  PubMed  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    Article  CAS  PubMed  Google Scholar 

  • Katsura H, Obata K, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Sakagami M, Noguchi K (2006) Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol 200:112–123

    Article  CAS  PubMed  Google Scholar 

  • Keeble JE, Bodkin JV, Liang L, Wodarski R, Davies M, Fernandes ES, Coelho Cde F, Russell F, Graepel R, Muscara MN, Malcangio M, Brain SD (2009) Hydrogen peroxide is a novel mediator of inflammatory hyperalgesia, acting via transient receptor potential vanilloid 1-dependent and independent mechanisms. Pain 141:135–142

    Article  CAS  PubMed  Google Scholar 

  • Khattab MM (2006) TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur J Pharmacol 548:167–173

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Seong AR, Yoo JY, Jin CH, Lee YH, Kim YJ, Lee J, Jun WJ, Yoon HG (2011) Gallic acid, a histone acetyltransferase inhibitor, suppresses beta-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol Nutr Food Res 55:1798–1808

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Son JY, Kim TH, Paik SK, Dai Y, Noguchi K, Ahn DK, Bae YC (2010) Expression of transient receptor potential ankyrin 1 (TRPA1) in the rat trigeminal sensory afferents and spinal dorsal horn. J Comp Neurol 518:687–698

    Article  CAS  PubMed  Google Scholar 

  • Klafke JZ, da Silva MA, Trevisan G, Rossato MF, da Silva CR, Guerra GP, Villarinho JG, Rigo FK, Dalmolin GD, Gomez MV, Rubin MA, Ferreira J (2012) Involvement of the glutamatergic system in the nociception induced intrathecally for a TRPA1 agonist in rats. Neuroscience 222:136–146

    Article  CAS  PubMed  Google Scholar 

  • Kroes BH, van den Berg AJ, Quarles van Ufford HC, van Dijk H, Labadie RP (1992) Anti-inflammatory activity of gallic acid. Planta Med 58:499–504

    Article  CAS  PubMed  Google Scholar 

  • Krogh R, Yunes RA, Andricopulo AD (2000) Structure-activity relationships for the analgesic activity of gallic acid derivatives. Farmaco 55:730–735

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ng TB, Gao W, Li W, Fu M, Niu SM, Zhao L, Chen RR, Liu F (2005) Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. Life Sci 77:230–240

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Nie G, Belton PS, Tang H, Zhao B (2006) Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48:263–274

    Article  CAS  PubMed  Google Scholar 

  • Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon C, Geppetti P, Nassini R (2012) TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 463:561–569

    Article  CAS  PubMed  Google Scholar 

  • Meotti FC, Forner S, Lima-Garcia JF, Viana AF, Calixto JB (2013) Antagonism of the transient receptor potential ankyrin 1 (TRPA1) attenuates hyperalgesia and urinary bladder overactivity in cyclophosphamide-induced haemorrhagic cystitis. Chem Biol Interact 203:440–447

    Article  CAS  PubMed  Google Scholar 

  • Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CA, Calixto JB, Santos AR (2006) Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the l-arginine-nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther 316:789–796

    Article  CAS  PubMed  Google Scholar 

  • Moilanen LJ, Laavola M, Kukkonen M, Korhonen R, Leppanen T, Hogestatt ED, Zygmunt PM, Nieminen RM, Moilanen E (2012) TRPA1 contributes to the acute inflammatory response and mediates carrageenan-induced paw edema in the mouse. Sci Rep 2:380

    Article  PubMed Central  PubMed  Google Scholar 

  • Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620

    Article  CAS  PubMed  Google Scholar 

  • Nabavi SF, Habtemariam S, Jafari M, Sureda A, Nabavi SM (2011) Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull Environ Contam Toxicol 2012:25

    Google Scholar 

  • Namer B, Seifert F, Handwerker HO, Maihofner C (2005) TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. Neuroreport 16:955–959

    Article  CAS  PubMed  Google Scholar 

  • Naylor J, Al-Shawaf E, McKeown L, Manna PT, Porter KE, O’Regan D, Muraki K, Beech DJ (2011) TRPC5 channel sensitivities to antioxidants and hydroxylated stilbenes. J Biol Chem 286:5078–5086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Negus SS, Vanderah TW, Brandt MR, Bilsky EJ, Becerra L, Borsook D (2006) Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319:507–514

    Article  CAS  PubMed  Google Scholar 

  • Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A, Tominaga M, Noguchi K (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliveira SM, Gewehr C, Dalmolin GD, Cechinel CA, Wentz A, Lourega RV, Sehnem RC, Zanatta N, Martins MA, Rubin MA, Bonacorso HG, Ferreira J (2009) Antinociceptive effect of a novel tosylpyrazole compound in mice. Basic Clin Pharmacol Toxicol 104:122–129

    Article  CAS  PubMed  Google Scholar 

  • Orhan N, Orhan IE, Ergun F (2011) Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food Chem Toxicol 49:2305–2312

    Article  CAS  PubMed  Google Scholar 

  • Patel SS, Goyal RK (2011) Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacogn Res 3:239–245

    Article  CAS  Google Scholar 

  • Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, Jegla T, Patapoutian A (2007) A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 3:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Punithavathi VR, Prince PS, Kumar R, Selvakumari J (2011) Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol 650:465–471

    Article  CAS  PubMed  Google Scholar 

  • Raisinghani M, Zhong L, Jeffry JA, Bishnoi M, Pabbidi RM, Pimentel F, Cao DS, Evans MS, Premkumar LS (2011) Activation characteristics of transient receptor potential ankyrin 1 and its role in nociception. Am J Physiol Cell Physiol 301:C587–C600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajalakshmi K, Devaraj H, Niranjali Devaraj S (2001) Assessment of the no-observed-adverse-effect level (NOAEL) of gallic acid in mice. Food Chem Toxicol 39:919–922

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142

    Article  PubMed  Google Scholar 

  • Sisignano M, Park CK, Angioni C, Zhang DD, von Hehn C, Cobos EJ, Ghasemlou N, Xu ZZ, Kumaran V, Lu R, Grant A, Fischer MJ, Schmidtko A, Reeh P, Ji RR, Woolf CJ, Geisslinger G, Scholich K, Brenneis C (2012) 5,6-EET is released upon neuronal activity and induces mechanical pain hypersensitivity via TRPA1 on central afferent terminals. J Neurosci 32:6364–6372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer C, Schmidt C, George A (1998) Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp Neurol 151:138–142

    Article  CAS  PubMed  Google Scholar 

  • Stanely Mainzen Prince P, Kumar MR, Selvakumari CJ (2011) Effects of gallic acid on brain lipid peroxide and lipid metabolism in streptozotocin-induced diabetic Wistar rats. J Biochem Mol Toxicol 25:101–107

    Article  CAS  PubMed  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    Article  CAS  PubMed  Google Scholar 

  • Trevisan G, Rossato MF, Walker CI, Klafke JZ, Rosa F, Oliveira SM, Tonello R, Guerra GP, Boligon AA, Zanon RB, Athayde ML, Ferreira J (2012) Identification of the plant steroid alpha-spinasterol as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive properties. J Pharmacol Exp Ther 343:258–269

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Singh A, Mishra A (2013) Gallic acid: molecular rival of cancer. Environ Toxicol Pharmacol 35:473–485

    Article  CAS  PubMed  Google Scholar 

  • von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652

    Article  Google Scholar 

  • Wang CC, Weng TI, Wu ET, Wu MH, Yang RS, Liu SH (2013) Involvement of interleukin-6-regulated nitric oxide synthase in hemorrhagic cystitis and impaired bladder contractions in young rats induced by acrolein, a urinary metabolite of cyclophosphamide. Toxicol Sci 131:302–310

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, Muscoli C, Mollace V, Ndengele M, Ischiropoulos H, Salvemini D (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878

    Article  CAS  PubMed  Google Scholar 

  • Watabiki T, Kiso T, Tsukamoto M, Aoki T, Matsuoka N (2011) Intrathecal administration of AS1928370, a transient receptor potential vanilloid 1 antagonist, attenuates mechanical allodynia in a mouse model of neuropathic pain. Biol Pharm Bull 34:1105–1108

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Chapman H, Saarnilehto M, Kuokkanen K, Koivisto A, Pertovaara A (2009a) Roles of cutaneous versus spinal TRPA1 channels in mechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat. Neuropharmacology 58:578–584

    Article  PubMed  Google Scholar 

  • Wei H, Hamalainen MM, Saarnilehto M, Koivisto A, Pertovaara A (2009b) Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 111:147–154

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Karimaa M, Korjamo T, Koivisto A, Pertovaara A (2012) Transient receptor potential ankyrin 1 ion channel contributes to guarding pain and mechanical hypersensitivity in a rat model of postoperative pain. Anesthesiology 2012:14

    Google Scholar 

  • Wei H, Koivisto A, Saarnilehto M, Chapman H, Kuokkanen K, Hao B, Huang JL, Wang YX, Pertovaara A (2011) Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat. Pain 152:582–591

    Article  CAS  PubMed  Google Scholar 

  • Zhao YY, Qin XY, Zhang Y, Lin RC, Sun WJ, Li XY (2010) Quantitative HPLC method and pharmacokinetic studies of ergosta-4,6,8(14),22-tetraen-3-one, a natural product with diuretic activity from Polyporus umbellatus. Biomed Chromatogr 24:1120–1124

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Fellowships from Conselho Nacional de Desenvolvimento Científico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) (Brazil) supported this work.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Trevisan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trevisan, G., Rossato, M.F., Tonello, R. et al. Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice. Naunyn-Schmiedeberg's Arch Pharmacol 387, 679–689 (2014). https://doi.org/10.1007/s00210-014-0978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-0978-0

Keywords

Navigation